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The results of the pure quantum-mechanical calculation in the
optical potential approach of integral cross sections in the wide
collision energy region for the elastic scattering of singlet and triplet

excited metastable helium atoms He (21 ,3S ) by sodium atoms

Na(32S ) are presented. Low-energy (at the energies below 10 meV)
structure of elastic cross sections was obtained. As an example,
using the partial phase shifts and cross sections for the maxima 1
meV (for singlet case) and 0.4 meV (for triplet case) energies, the
analysis of their origin is made. The comparison of the calculated
Penning-ionization cross sections with the experimental and quasi-
classical data is presented.

1. The investigation of elastic scattering of atomic
particles is a part of a general trend in studying the
properties of interatomic interaction and scattering
characteristics. Precise experimental measurements of
differential scattering cross sections and their energy
dependences, as well as different integral cross sections
may, together with theoretical calculations, also favour
in solving the important problem of determining the
optical potential (OP) of atomic interaction (see, e.g.,
[1,2]).

Up to date, the elastic collisions of ground state
noble-gas atoms (Rg) were studied. A transition to
the interaction of atoms, one of which being in the
excited state (Rg∗), say, the metastable one, results
in the interatomic potentials with large well depth
reaching several millielectronvolts. Such values are due
to the large polarizability of the elelectron shell in
the excited atom. Recall that the asymptotic van der
Waals behaviour of the interaction potential is

~  −  C6 /  R  6, and the coefficient C6, according to the
Slater¯Kirkwood formula [3], has a following form

C6 =  
3
2

 
α1 α2

√ α1  +  √ α2
 (a.u.),

where α1,2 are the static polarizabilities of interacting
atoms.

Further expansion of studies to the interaction of
excited  Rg∗ atoms  with metal atoms (M) of  alkali,
alkaline-earth, and rare-earth elements, taking into
account their large polarizabilities, means that the
interaction will also be characterized by considerable
potential well depths. Thus, from the fundamental
view-point, the studies of the characteristics of elastic
atom-atom scattering described by the interaction
potential with large depth are of specific interest. Study
of this process at low collision energies will, most likely,
be characterized by the resonance features related to
the formation of temporary bound (compound) states
of quasi-molecular (Rg∗M) type. In this case, the most
general scattering characteristics are the integral ones,
i.e. total, elastic, and ionization scattering cross
sections. Note that elastic scattering of Rg∗ atoms by
alkali-earth (and rare-earth) atoms may lead to
excitation of the positive ion produced, which
complicates essentially the description of the process
(an additional channel arises).

Low collision energy as compared to the potential
well depth requires, in our opinion, the theoretical
method to be mainly quantum-mechanical one, while
usually various modifications of semiclassical
approximation are used. Hence, the objective of this
work is to present a brief survey of papers dedicated
to interaction OP at elastic collisions of excited rare-gas
atoms with metal atoms, quantum-mechanical
calculation of scattering phases in the OP
approximation and, based on this, determination of
integral cross sections within a wide range of meV
and thermal energies, and theoretical description of
their peculiarities in the strong interactions of
He(21,3S ) and Na(32S ) atoms. Scattering phase
calculations were carried out by the method of phase
functions [4 ¯ 6] with complex OP [7]. The
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theoretical results of calculations of the integral cha-
racteristics presented below have a preliminary cha-
racter.

Such calculations allow the model notions used for
defining OP for atoms in various excited states to be
checked. The use of the quasi-classical approximation
for taking into account a large number of partial waves
at quite large energies (e.g., above 50 meV) will enable
one to distinguish better and clarify the quantum-
mechanical and semiclassical aspects of the scattering
process. Resulting total, differential, diffusion, and
viscosity cross sections may be used in various
dynamical models of gas and plasma.

2. Interaction of a metastable He(21,3S ) atom with

a ground-state Na(32S ) atom is characterized by two
total spin values of quasi-molecular terms ¯ 1/2 and
3/2. Singlet helium atom scattering occurs via one
doublet 2Σ+  quasi-molecular term, whereas this takes
place for the triplet state via two terms ¯ the doublet
2Σ+  (statistical weight 2/6) and quartet 4Σ+  (4/6)
ones. Note that the doublet-term interaction is
described by the complex OP, while the quartet-term
one ¯ by the real OP. The real part OP via doublet
terms was obtained in [7] in the interacting
configuration approximation for a NaHe∗ molecule with
the use of fitting to the correct asymptotic behaviour
¯ the van der Waals potential. Imaginary parts of
these OP (i.e., autoionizing widths) were obtained
using the Stieltjes moment method with continuum rep-
resentation discretization for the e +  NaHe+  system

in the (L2) space.
The theoretical methods of obtaining the ab initio

OP for the description of interatomic interaction in
the 'metastable Rg atom + metal M atom“ system
are available now considering the above system as the
collisional autoionizing complex Rg∗M [3, 7 ¯ 9]. The
obtained OP are used for the detailed description of
elastic scattering and analysis of characteristics of
electron spectra for the Penning-ionization (PI)
process.

In [7], OPs for singlet and triplet metastable helium
atom scattering by sodium atom were obtained by
calculating in terms of resonance electron energy and
autoionizing width, and also used to calculate
differential cross sections (DCS) in semiclassical
approximation and determine PI cross sections within
a wide thermal energy range from 10 to 1000 meV.
In [8], based on the same assumptions, ab initio OPs
were obtained for interaction of helium metastables
with H, Li, Na atoms. The similar technique was
applied in [3] to study interactions of helium
metastables with Mg, Ca, Sr, and Ba atoms. In [9],
the potential well values of the real part of OP derived
from high-resolution PI electron spectra were
generalized for the many Rg∗M systems (Rg =  He,

Ne, Ar, Kr, Xe, M =  Li, Na, K, Rb, Cs, Mg, Ca,
Sr, Ba, Yb, Hg).

One more possibility to obtain OP, similarly to the

case of He(21S ) +  Na(32S ) scattering at 52, 92, 132,
188, and 207 meV energies and laboratory scattering
angles θL =  5 ÷  105° [2], is fitting of calculated DCS
to the experimental one (the so-called direct approach
to the solution of the reverse scattering problem) by

χ2 method. In this paper, the semiclassical
approximation is used, the real part of the OP has
the form of a modified double Morse potential [1],
and the imaginary one is taken as a simple exponent.

In [10], the phase functions method was used in
quantum-mechanical calculations of scattering phases,

DCS, and other characteristics of He(21S ) −
−  Na(32S ) scattering at 68 meV, while, in [11, 12],
based on OP from [2], the theoretical phase analysis
of this process was carried out at 52, 80, and 92 meV.
Similarly, in [6] with OP taken from [7], the same

characteristics were calculated for the He(21,3S ) −
−  Na(32S ) case. The obtained DCS were used to
interpret the measured summary DCS for these

processes [13]. In [14], OPs for the He(23S ) −
−  Na(32S ) pair (doublet and quartet terms) were used
for semiclassical calculation of PI cross section and
of such pure quantum-mechanical scattering charac-
teristic for triplet helium as the exchange cross section
within the ~  10 −  200 meV energy range. OP for
attractive quartet term [14] was also used in [6] for
the semiclassical evaluation of the quartet addends to
the total and elastic cross sections at 68 meV. These
addends are 2.5 times larger than those for doublet
one. Note again that the interaction via the quartet
term does not contribute to the PI cross section.

We used the optical potentials [7] (for two cases
¯ singlet and triplet excited metastable states of
helium) of He atom scattering by Na. Principal cha-

racteristics of these OPs for 21S  (2 3S )-state of He are
as follows: real parts of doublet OP have a strong
repulsion at R  ≤  0.2a0 (for example: V (0.1a0) =
=  227.97 a.u. (484.09 a.u.), V (0.2a0) =  50.062 a.u.
(87.715 a.u.)); zero value at R0 ≈  5.75a0 (4.45a0);
minimal value VRm  =  −  300 meV at Rm  =  7.35a0
(VRm  =  −  740 meV, Rm  =  5.85a0); asymptotic

behaviour −  C6/ R  6, C6 =  3660 a.e. (2220 a.e.), that
approximately 'begins“ at Ra =  8.22a0 (6.27a0).
Imaginary parts of OP [7] describing the PI process
are characterized by nearly exponential behaviour at
R  ≥  5a0 with some deflection from it at R  < 5a0. As
this takes place, beginning at 6a0, the imaginary part

for the 21S -state decreases more rapidly than for the
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23S -state (for example, the triplet part is 5 times
greater than the singlet one at R  =  11a0).

3. Quantum description of the relative motion of
atoms in the Born ¯ Oppenheimer adiabatic approach
can be described by Schrodinger equation with the

complex OP ¯ Vopt (R ) (center-of-mass system, atomic
units: h =  m e =  e =  1) (see [6, 10])





−  
1

2µ ∇ R
2  +  Vopt (R) −  E




 Ψ (R) =  0, (1)

where Vopt (R) =  VR   (R) +  i VI   (R), E  is the kinetic
collision energy, µ is a reduced mass (6214 a.u. for
He¯Na), R  is an internuclear distance.

The system of equations for the complex phase
functions δl (E ,  R ) =  εl (E ,  R ) +  i η

__
l (E ,  R ) is obtained

from (1) [4, 5] and has a form

dεl

dR
 =  −  

1
4k ηl

 {VR  [ (1 +  ηl)
2 (jl cos εl −  n l sin εl)

2 −

−  (1 −  ηl)
2 (jl sin εl +  n l cos εl)

2 +

+  2VI  (1 −  ηl
2)(jl cos εl −  n l sin εl)(jl sin εl +  n l cos εl)},

dηl

dR
 =  

1
2k

 {VI  [ (1 +  ηl)
2 (jl cos εl −  n l sin εl)

2 −

−  (1 −  ηl)
2 (jl sin εl +  n l cos εl)

2 ]  −

−  2VR  (1 −  ηl
2)(jl cos εl −  n l sin εl)(j sin εl +  n l cos εl)},

(2)

with the initial conditions

εl (E ,  0) =  0,    ηl (E ,  0) =  1, (3)

where ηl (E ,  R ) =  exp (−  2 η
__

l (E ,  R )); k 2 =  2µ E , and
jl ≡  jl (kR ), n l ≡  n l (kR ) are the Riccatti ¯ Bessel
functions. Real εl (E) and imaginary η

__
l (E) parts of

the partial scattering phase shifts δl (E) are obtained
from the corresponding phase functions

εl (E) =  lim εl (E ,  R ),    η
__

l (E) =  −  
1
2

 ln lim ηl (E ,  R ),

at R  → ∞ . (4)

The solution of system (2) with condition (3) was
carried out numerically by methods described in detail
in [6, 10].

It should be noted here that the analytic expressions
for OP [2] were obtained in [10] for these parts of
phase functions at low R  (kR  ≤  0.05). From these
expressions, the strong dependence of the real and
imaginary values of phase functions on the orbital
momentum, wave vector, and potential parameters
follows.

Fig.1. Integral cross sections (a), real part of partial phase shifts (b) and
partial cross sections (c) for He(21S )  ̄  Na(32S ) elastic scattering. a ̄
present result: total (1), elastic (2) and Penning-ionization (3); Penning-
ionization: quasi-classical theory (4) [7], (5) [2]; experiment (+) [17]
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The use of the phase functions method is quite
promising due to the fact that these functions allow
the interaction potential to be 'scanned“. Recall that,
by definition, this function at a certain point R  is the
phase of scattering by the corresponding potential cut
at the same point. Therefore, this method allows one
to trace the formation of the whole scattering phase
shift in different spatial domains of given potential
[4, 5].

The scattering phases calculated by us were used
to obtain the following integral-type cross sections
elastic scattering σel; absorption (Penning-ionization)
σi; total σ [15, 16]]:

σel (E) =  ∑ 
l

  σl (E),    σl (E) =  
g π
k 2

 (2l +  1)| S l −  1| 2,

σi (E) =  
g π
k 2

  ∑ 
l

    (2l +  1)(1 −  | S l |
2 ),

σ (E) =  
2π
k 2

  ∑ 
l

  (2l +  1)(1 −  Re S l ) =  σel (E) +  σi (E),

S l =  exp [ 2i δl (E)] . (8)

For doublet terms in the case of He (21,3S ) +
+  Na (32S ) scattering, the statistical weights g are 1
for singlet and 1/3 for the triplet He atoms.

4. In Figs. 1, 2, we present the calculated scattering
characteristics for singlet and triplet helium atoms
impacting on a sodium atom. Our calculations were
only quantum-like, and about 50 (at small) and 150
(at large energies) partial waves were taken into
account. As follows from Figs. 1,a, 2,a, our PI cross
sections are characterized by the lack of structure and
by a quite monotonous behaviour. From the figures,
we also see good agreement of the above cross sections
with a few experimental values and the quasi-classical
[ 2, 7,  14]   curves: for singlet case at E  =  50 meV ¯

214a0
2 (±  100% ) [17], and for triplet at E  =

=  40 meV −  114a0
2 (+  5% ,−  10% ) [18]; at 50 meV ¯

86a0
2 (±  100% ) [17]. Note that our curves σi (E)

systematically lie slightly below the quasi-classical
values [2] obtained with OP recovered by experimental
DCS and with OP [7, 14] testifying in favour of our
quantum calculation.

The well-defined gross structure at very small
energies, lower than 10 meV, in the total and elastic
cross section exists and owes its existence to the
quantum-mechanical description at small energies: for
singlet scattering at 1, 3.5, 9 meV and for triplet
scattering at 0.4, 0.9, 2, and ~  6.5 meV. It follows
from Figs. 1,a, 2,a and (8) that the structure in total
cross sections is due to elastic cross sections, since
PI ionization cross sections are characterized by the
above monotonous behaviour.

It seems interesting to find the ratio of ionization
cross sections q =  σi (He(2 1S ))/ σi (He(2 3S )) at
different collision energies. In [8], it is stated that

Fig.2. The same as in Fig.1 for He(23S )  ̄  Na(32S ) elastic scattering. a
¯ present result:  total (1) , elastic (2)  and Penning-ionization (3) ;
Penning-ionization: quasi-classical theory (4) [7], (5) [14]; experiment
(+) [17], (o) [18]

INVESTIGATIONS  OF  ELASTIC  SCATTERING

ISSN 0503-1265. Ukr. J. Phys. 2002. V. 47, N 6 535



this ratio depends weakly on the energy. Recall, that
it should be 3, corresponding to that of statistical
weights of spin-allowed collisions. According to
experiments, at 50 meV q =  2.5 [17], at 70 meV ¯
2.8 (±  30% ) [8] and 3.1 (±  30% ) [19]. Our values
of q (E) at some energies are as follows: 1.9(0.1),
2.4(0.5), 2.2(1), 2.0(5), 2.1(10), 2.1(50), 2.0(68),
2.1(70), 2.0(100), 2.4(500), and 2.2(1000). As is seen,
the theoretical values are systematically less than 3
and this is a general trend in calculations (see also
[6]).

He(2 1S ) +  Na (3 2S ) s c a t t e r i n g. The real
part of the partial phase shifts and cross sections from
Fig. 1,b,c is used to explain a feature near 1 meV
for singlet helium scattering. The maximum value of
the elastic cross section at this energy is reached due
to the partial cross sections contribution at
l =  8 ÷  19 (in this case, the cross section varies from

~  300 to 850a0
2 ). The real part of the phase shifts

has 5π/ 2 or π/ 2 values for these orbital momenta at
the 1 meV energy, and the addends to the respective
partial cross sections are maximal.

Energy dependences of the partial phase shifts
δ16,17,18 (E) pass the value of π/ 2 at E  =  0.9, 1.0, and
~  1.15 meV, respectively. This gives a maximum of
σ17 at 1.0 meV and a such a behaviour of the scattering
phase allows one to state that the feature in σel at
this energy is of resonance nature.

He(2 3S ) +  Na (3 2S ) s c a t t e r i n g. For the
triplet helium scattering, from Fig. 2,a, the maximum
value of the elastic cross section at the 0.4 meV energy
is due to the partial cross sections contribution at
l =  5 ÷  12 (cross sections vary from ~  500 to

~  1100a0
2 ), as seen from Fig. 2,b,c. The real parts

of the phase shifts are close to 3π/ 2 or π/ 2 values
for these orbital momenta at the 0.4 meV energy, and
the respective addends from partial cross sections at
this energy are larger than those from the neighboring
ones for the 0.3 and 0.6 meV energies. Nevertheless,
it is seen from Fig. 2,b,c  that the partial cross sections
in this orbital momenta interval at 0.3 and 0.6 meV
are similar and, thus stimulate the maximum in the
cross section at 0.4 meV.

The energy dependences of the partial phase shifts
δ8,9 (E) pass the value of π/ 2 at E  ≈  0.2, 0.3 meV,
respectively, and δ10 (E) reaches this value at ~  0.5
meV. This gives a maximum of σ10 at 0.4 meV and
such a behaviour of the scattering phase allows one
to state that the feature in σel at this energy is also
of a resonance origin.

Some concluding remarks can be made. The quantum
notions used in the calculations for the system of
strongly interacted atomic particles Rg∗M in the OP
approximation, when the system is treated as the
autoionizing complex, describe correctly the charac-

teristics of elastic scattering at the given energy. PI
cross sections calculated by us with the use of above
OPs agree quantitavely well with the available
experimental data. The energy dependence of these
cross sections is similar to the behaviour of the revelant
semiclassical values and goes below them.

The peculiarities in the total cross sections are the
result of only the behaviour of elastic cross sections.
These peculiarities are due to the fact that the quasi-
molecular shape resonances at these energies do exist.
This structure requires a good explanation within the
framework of a more complete phase analysis. The
initial (threshold) behaviour of the total (elastic) cross
sections for the singlet and triplet cases is very different
and may be due to the respective optical potential
behaviour.

In future, one needs to perform the quasi-classical
calculations of the highest partial waves and their
addend to the integral cross sections, to consider the
quantum-mechanical spin exchange process for the
priplet helium scattering (in view of the doublet and
quartet term interaction), and to explain other
peculiarities in both cases of excited helium atom
scattering.
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