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It is shown by Nelson, Regge and Zertuche that the algebra
of observables of quantum gravity in the (2+1)-dimensional de
Sitter space with space being a torus is related to the Fairlie�
Odesskii algebra U ′q(so3). The symmetry group of the algebra of
observables turns out to be the modular group PSL (2,Z) of a
torus. We construct representations of this group, corresponding
to finite-dimensional representations of the algebra of observables.

Let us briefly describe the approach to (2+1)-
dimensional gravity based on the first-order formalism
by Witten [1] and Nelson, Regge, Zertuche [2], see
also review [3]. The key idea of these papers is
the fact that (2+1)-dimensional gravity is a gauge
theory with Chern�Simons action. In [1], Witten gives
some arguments about impossibility to present (3+1)-
dimensional gravity as a gauge theory. Thus, the case of
(2+1)-dimensional space-time is specific. Despite this,
physicists working in this area believe that investigation
of (2+1)-dimensional case will shed light to problems of
quantization of (3+1)-dimensional gravity.

The standard Einstein�Hilbert action in the 3D
space-time M (without matter) topologically equivalent
to R×Σ (R corresponds to time and a closed 2D surface
Σ corresponds to space) is

I =
1

16πG

∫
M

d3x
√
−g(R− 2Λ),

where R is the scalar curvature and Λ is the cosmological
constant. Classical solutions of the corresponding
Einstein equation are constant curvature spaces M .

In the first-order formalism, the fundamental
variables are �dreibein� eaµ such that ηabeµ

aeν
b = gµν ,

ηab = diag(− + +), and the spin connection ωµ
ab.

We set eaµ and ωµ
ab to be independent. They can be

treated as components of 1-forms ea = eaµdx
µ and ωa =

1
2ε
abcωµbcdx

µ. The action I (up to a constant multiplier)
becomes

I = 2
∫
M

ea ∧
(
dωa +

1
2
εabcω

b ∧ ωc − Λ
6
εabce

b ∧ ec
)
.

In the anti-de Sitter case (that is, for Λ = −1/`2 < 0),
introducing the variables A(±)a = ωa ± (1/`)ea, we
rewrite the Einstein�Hilbert action I in the completely
equivalent form of Chern�Simons action with the
SO(2, 1)× SO(2, 1) gauge potential

I[A(+), A(−)] = ICS[A(+)]− ICS[A(−)],

where

ICS[A] =
k

4π

∫
M

tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
and k = `

√
2/8G. Variation of the action I in

eaµ and ωaµ gives the equations of motion (which
contain the derivatives with respect to time of dynamic
variables) and constraint equations (which do not
contain derivatives with respect to time). It is easy to see
that dynamic variables are space-like components eai and
ωai , i = 1, 2. The Poisson brackets of dynamic variables
on a slice of constant time can be read off directly from
the action I:{
ωai (x), ebj(y)

}
=

1
2
εijη

abδ2(x− y),{
ωai (x), ωbj(y)

}
=
{
eai (x), ebj(y)

}
= 0.
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Here, the variables ωa1 (x), ωa2 (x) can be interpreted as
coordinates and −ea2(x)/2, ea1(x)/2 as the corresponding
momentum variables. The variables eai and ωai do not
give yet the physical phase space, since it is necessary
to impose the constraint equations. As argued in [1],
the only gauge-invariant observables that do not vanish
when the constraints are imposed are global variables,
such as the traces of holonomies around possible non-

contractible loops γ in Σ. In terms of variables A
(±)a
i (x),

i = 1, 2, Poisson brackets have the form{
A

(±)a
i (x), A(±)b

j (y)
}

= ±1
`
εijη

abδ2(x− y),

while variables A(+) commute with variables A(−).
These brackets, in turn, induce Poisson brackets [2]
among the traces of holonomies

G(±)
γ = Pexp

{∫
γ

A
(±)a
i Tadx

i

}
,

where Ta, a = 1, 2, 3, are the generators of the Lie
algebra corresponding to the Lie group SO(2, 1). Since
the connections A(+) and A(−) are flat (it follows
from the equations of motion of the Chern�Simons
action), the holonomies along two homotopic paths are
equal. The traces of these holonomies are of special
interest because after quantization they constitute the
algebra of observables in quantum (2+1)-dimensional
gravity [1]. This article is devoted to the construction
of representations of the symmetry group of the algebra
of observables in the case where Σ is a torus with one
boundary component (hole). Let γ1 and γ2 be two basic
cycles on the torus and

R±1 =
1
2

TrG(±)
γ1
, R±2 =

1
2

TrG(±)
γ2
, R±3 =

1
2

TrG(±)
γ1γ2

.

Then, as shown in [2],{
R±1 , R

±
2

}
= ± 1

4`
(
R±3 −R

±
1 R
±
2

)
, cyclic permutations.

In order to quantize this quadratic Poisson algebra,
we have to replace R±1 , R

±
2 and R±3 by operators R̂±1 ,

R̂±2 and R̂±3 , respectively. Nelson, Regge and Zertuche
proposed [2] to replace the quadratic combination
from the right-hand sides of these relations by
the corresponding symmetrization, that is, R±1 R

±
2 →

(R̂±1 R̂
±
2 + R̂±2 R̂

±
1 )/2 and so on. Thus, the resulting

algebra of observables is defined by the relations

R̂±1 R̂
±
2 e
±iθ − R̂±2 R̂

±
1 e
∓iθ = ±2i sin θR̂±3 ,

and cyclic permutations of R̂±1 , R̂
±
2 , R̂

±
3 .

It turns out that this algebra is isomorphic to the direct
sum U ′q(so3) ⊕ U ′q−1(so3), where q = e2iθ and tan(θ) =
−~/8`. The first part of the direct sum corresponds to
fields A(+) and the second part corresponds to A(−).
In the de Sitter case (to which the article is devoted),
the situation is similar, but the quantized algebra of

observables is connected to U ′q(so3) with real q = e2θ̃,

tanh θ̃ = i~/8`. The cases of surfaces Σ with other
topology and the corresponding algebras of observables
are discussed in [4�6]. These algebras are also related
to deformed algebras. In [7], they are obtained in a
completely geometric way as Kauffman skein algebras
and interpreted as quantization of the Poisson algebra
of SL(2,C)-characters of the fundamental group of a
surface. The case of Λ = 0 was considered in [1, 3]. In this
case, gravity is equivalent to the Chern�Simons theory
with the gauge group ISO(2, 1) (Poincar�e group). The
quantization procedure was described there.

The Fairlie�Odesskii algebra U ′q(so3) [8, 9] is an
associative algebra with the generating elements I1, I2,
I3 and defining relations

q1/2I1I2 − q−1/2I2I1 = I3, (1)

q1/2I2I3 − q−1/2I3I2 = I1, (2)

q1/2I3I1 − q−1/2I1I3 = I2, (3)

where q is a non-zero complex number called
deformation parameter. In the limit q → 1, the algebra
U ′q(so3) reduces to the Lie algebra so3. Substituting
I3 from Eq. (1) into Eqs. (2) and (3), we obtain
other equivalent formulation of U ′q(so3) in terms of two
generating elements I1 and I2:

I1I
2
2 + I2

2I1 − (q + q−1)I2I1I2 = −I1, (4)

I2I
2
1 + I2

1I2 − (q + q−1)I1I2I1 = −I2. (5)

The generators I1 and I2 correspond to holonomies along
two basis cycles γ1 and γ2 on a torus. In what follows,
we suppose that 0 < q < 1, thus restricting ourselves to
the de Sitter case.

Diffeomorphisms of a torus Diff(Σ) induce
automorphisms of the algebra of observables,
that is symmetries of quantum (2+1)-dimensional
gravity. These automorphisms are generated by two
automorphisms S and T . Their action on U ′q(so3) is
uniquely defined by

S(I1) = I2, S(I2) = I1,

T (I1) = I1, T (I2) = q1/2I2I1 − q−1/2I1I2.
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These automorphisms satisfy the relations

S2 = 1, (ST )3 = 1, (6)

which are the defining relations for the modular
group PSL(2,Z) ' SL(2,Z)/{1,−1} of a torus
(isomorphic to the quotient group Diff(Σ)/Diff0(Σ),
where Diff0(Σ) is the connected component of the
identical diffeomorphism in Diff(Σ)). This group is also
known as the mapping class group. It is very important
for quantum gravity to study the representations of
this symmetry group, which are induced from the
representations of the algebra of observables U ′q(so3).

The algebra U ′q(so3) has irreducible finite-
dimensional representations of classical and non-
classical type [10]. The classical type representations
are a deformation of spin l representations of the Lie
algebra so3, the non-classical type representations have
no such analogs. In what follows, we consider only
the irreducible representations of the algebra U ′q(so3)
which are of classical type with integral spin l, that
is l = 0, 1, 2, . . ., on the (2l + 1)-dimensional space Vl.
These representations will be denoted by Tl. The space
Vl of the representation Tl is spanned by the basis
vectors |m〉, m = −l,−l + 1, . . . , l, which are supposed
to constitute the orthonormal basis: 〈m′|m〉 = δmm′ .
The action formulas for the operators Tl(I1) and Tl(I2)
are:

Tl(I1)|m〉 = i[m]|m〉, (7)

Tl(I2)|m〉 = iAl,m|m+ 1〉+ iAl,m−1|m− 1〉, (8)

where

Al,m =
( [m][m+ 1]

[2m][2m+ 2]
[l −m][l +m+ 1]

)1/2

and the notation of q-number

[x] ≡ qx − q−x

q − q−1
(9)

is used.
If ψ is an automorphism of U ′q(so3), then a

mapping Tl ◦ ψ from U ′q(so3) into the space of linear
operators on Vl defines a representation of U ′q(so3).
If ψ is an element of PSL(2,Z), that is a sequence
of automorphisms S and T , then the representation
Tl ◦ ψ is equivalent to Tl. It is sufficient to
prove this statement in the cases ψ = T and
ψ = S. The proofs in the both cases are based on the
classification of representations of U ′q(so3) [10]. Proof
in the case ψ = T (resp. ψ = S) is based on the

observation that Tl is a unique, up to equivalence,
irreducible (2l + 1)-dimensional representation T of
U ′q(so3) such that the spectrum of operator T (I1) is
{−i[l],−i[l − 1], . . . , i[l]} (resp., such that Tr(T (I1)) =
Tr(T (I2)) = 0). Thus, for ψ ∈ PSL(2,Z), there exists
an intertwining operator Cψ such that C−1

ψ Tl(a)Cψ =
Tl(ψ(a)), ∀a ∈ U ′q(so3). It is defined up to a scalar
multiplier (it follows from the Schur lemma). Since
automorphisms S and T generate the modular group
PSL(2,Z), the corresponding intertwining operators TS
and TT give a projective representation of this group.
The mentioned scalar multipliers can be chosen to make
this representation to be an exact representation. Our
main task is to find this representation.

Let us find CT . Since Tl(T (I1)) = Tl(I1) is diagonal
(in the basis {|m〉}) with pairwise non-equal diagonal
elements, it follows from the Schur lemma that CT is also
diagonal (in the same basis). Let 〈m′|CT |m〉 = δm,m′tm.
Further, we have

〈m+ 1|Tl(T (I2))|m〉 = (i[m]q1/2 − i[m+ 1]q−1/2)×

×〈m+ 1|Tl(I2)|m〉 = −iq−m−1/2〈m+ 1|Tl(I2)|m〉.

From other hand,

〈m+ 1|Tl(T (I2))|m〉 = 〈m+ 1|C−1
T Tl(I2)CT |m〉 =

= t−1
m+1tm〈m+ 1|Tl(I2)|m〉.

Thus, t−1
m+1tm = −iq−m−1/2, and therefore tm =

imqm
2/2t0.

Let us find CS . To this end, it is useful to diagonalize
operator Tl(I2). The eigenvectors of this operator have
the form

|̃x〉 =
l∑

m=−l

am(x)|m〉, (10)

with eigenvalues i[x], that is,

Tl(I2)|̃x〉 = i[x]|̃x〉. (11)

Our next task is to find all the values of x and
matrix elements am(x) of the transformation matrix.
Substituting Eq. (10) into Eq. (11) and using the
action formula, Eq. (8), we obtain the recurrent
relation

Al,n−lPn+1(x) +Al,n−l−1Pn−1(x) = [x]Pn(x), (12)

where n = l + m, Pn(x) = an−l(x), n = 0, 1, 2, . . . , 2l.
Since Al,−l−1 = Al,l = 0, the relation has a solution
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only at some fixed x. Now we rewrite this relation
as

[2l−n]P ′n+1(x)+[n]P ′n−1(x) = (qn−l+ql−n)[x]P ′n(x),(13)

where functions P ′n(x) (in fact, they are polynomials of
[x] if P0(x) is taken to be independent of x) are defined
as

Pn(x) =
(

[l][2l − 1]![2l − 2n]
[n]![2l − n]![l − n]

)1/2

P ′n(x), (14)

and [r]! = [r][r−1] · · · [2][1] is the definition of q-factorial.
Using the definition of q-numbers (9), we obtain from
Eq. (13)

1− q2n−4l

1 + q2n−2l
P ′n+1(x)− (1− q2n)q−2l

1 + q2n−2l
P ′n−1(x) =

= (qx − q−x)q−lP ′n(x). (15)

The obtained recurrent relation has the form of a
recurrent relation for q-Racah polynomials of discrete
variables (see [11]) if one imposes P ′0(x) = 1.
Thus

P ′n(x) = 4φ3

(
q−y, γδqy+1, q−n, αβqn+1

αq, βδq, γq
; q, q

)
,

where α = β = −γ = −δ = iq−l−1/2 and y = l − x.
We have used the definition of basic hypergeometric
function:

r+1φr

(
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)
=

=
∞∑
n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

zn,

where (c1, c2, . . . , ck; q)n = (c1, q)n(c2, q)n · · · (ck; q)n,
(c; q)n = (1− c)(1− qc) · · · (1− qn−1c).

The orthogonality relation for functions P ′n(x) has
the form (see [11])

2l∑
y=0

wyP
′
n(l − y)P ′k(l − y) = δnkv

−1
n

2l∑
y=0

wy, (16)

where

wy =
(γδq; q)y(1− γδq2y+1)(αq, γq, βδq; q)y
(q; q)y(1− γδq)(δq, γδq/α, γq/β; q)y

(αβq)−y =

=
[l][2l − 1]!
[y]![2l − y]!

[2l − 2y]
[l − y]

,

vn =
(αβq; q)n(1− αβq2n+1)(αq, γq, βδq; q)n
(q; q)n(1− αβq)(βq, αβq/γ, αq/δ; q)n

(γδq)−n =

=
[l][2l − 1]![2l − 2n]
[n]![2l − n]![l − n]

.

Note that Eq. (14) has the form Pn(x) = v
1/2
n P ′n(x).

Taking into account (see [11]) that

2l∑
n=0

vn =
2l∑
y=0

wy =
(

2
[2l − 2]!!
[l − 1]!

)2

,

where [k]!! = [k][k − 2] · · · [2](or[1]), [0]!! = 1, we rewrite
Eq. (16) as

l∑
x=−l

ŵ(x)Pn(x)Pk(x) = δnk,

where

ŵ(x) =
wl−x∑2l
y=0 wy

=
[l][2l − 1]!

[l − x]![l + x]!
[2x]
[x]

(
[l − 1]!

2[2l − 2]!!

)2

.

Therefore, sm(x), m = −l,−l + 1, . . . , l, defined as

sm(x) = (−1)x−lŵ1/2(x)Pm+l(x) =
[l]![2l − 1]!
2[2l − 2]!!

×

×(−1)x−l
(

[2x]
[x][l − x]![l + x]!

[2m]
[m][l −m]![l +m]!

)1/2

×

×4φ3

(
q−l+x, −q−l−x, q−m−l, −q−l+m

iq−l+1/2, q−2l, −iq−l+1/2 ; q, q
)
, (17)

satisfy the orthonormality condition

l∑
x=−l

sm(x)sm′(x) = δmm′ ,

that is, sm(x) are the matrix elements of an orthogonal
matrix. Hence,

l∑
m=−l

sm(x)sm(x′) = δxx′ .

These relations lead to orthonormality of the set of basis
vectors

|x〉 =
l∑

m=−l

sm(x)|m〉, x = −l,−l + 1, . . . , l. (18)

Note that these vectors are proportional to |̃x〉, and
therefore they are also eigenvectors for Tl(I2) with the
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same eigenvalues i[x]. For the matrix elements sm(x), we
have sm(x) = sx(m). To make this symmetry explicit,
we use the Sears transformation (see formula (III.15) in
[11]) for the series 4φ3 from Eq. (17). The result is

sm(x) =
[l]![2l − 1]!
2[2l − 2]!!

×

×
(

[2x]
[x][l − x]![l + x]!

[2m]
[m][l −m]![l +m]!

)1/2

(−1)x+m×

×4φ3

(
−q−l+x, q−l−x, −q−l+m, q−l−m

q−2l, iq−l+1/2, −iq−l+1/2 ; q, q
)
. (19)

Let us show that CS may be defined as

CS |m〉 =
l∑

m′=−l

sm′(m)|m′〉. (20)

Indeed, we have Tl(I2)CS |m〉 = i[m]CS |m〉, and
therefore 〈m′|C−1

S Tl(I2)CS |m〉 = 〈m′|Tl(I1)|m〉. Thus,
C−1
S Tl(I2)CS = Tl(I1). Since CS has an

orthogonal and symmetric matrix, we have
C−1
S = CT

S = CS . Using this fact, the former relation
can be rewritten as C−1

S Tl(I1)CS = Tl(I2). Thus, CS
is, indeed, an intertwining operator corresponding to
automorphism S. Moreover, we automatically obtain
that CS satisfies the first of the defining relations (6)
of PSL(2,Z).

In order to obtain the representation of the second
of relations (6), we have to fix the matrix element t0 of
operator CT in an appropriate way. First, we rewrite the
second of the defining relations (6)

CT CSCT CSCT CS = 1

in the form

CSCT CS = C−1
T CSC

−1
T ,

where we have used C2
S = 1. Now we take the matrix

elements 〈m′| · · · |m′′〉 of the both sides of this relation.
We obtain

l∑
m=−l

t0sm(m′′)qm
2/2imsm(m′) =

= t−2
0 q−(m′2+m′′2)/2i−m

′−m′′sm′(m′′). (21)

It follows from the explicit formula (19) for sm(x) that

sm(−l) =
[l]!

2[2l − 2]!!
(−1)m−l

(
[2l − 1]!

[l]

)1/2

×

×
(

[2m]
[m][l −m]![l +m]!

)1/2

.

Fixing in Eq. (21) m′ = m′′ = −l and using

s−l(−l) =
[l − 1]!

2[2l − 2]!!
,

we rewrite Eq. (21) as

t0
[l]![2l − 1]!!

2

l∑
m=−l

imq
m2
2 (qm + q−m)

[l −m]![l +m]!
= t−2

0 q−l
2
(−1)l.

The left-hand side of this relation is equal to t0q
−l(l−1)/2.

Hence, t0 = (−1)lq−l(l+1)/6 and the operator CT is

CT |m〉 = (−1)lq−l(l+1)/6imqm
2/2|m〉. (22)

Then the intertwining operators CS and CT given by
Eqs. (20) and (22) satisfy the defining relations for
PSL(2,Z), giving a representation of the modular group
of torus, which is the symmetry group in (2 + 1)-
dimensional quantum gravity with space being a torus.

The investigation described in this article is close
to the investigation made by R. Kashaev in [12],
where he considered the spaces of general genus and
infinite-dimensional representations of their mapping
class groups.
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ÏÐÎ ÑÈÌÅÒÐI� Â (2+1)-ÂÈÌIÐÍIÉ
ÊÂÀÍÒÎÂIÉ ÃÐÀÂIÒÀÖI�

Ì.Ç.Iîðãîâ, I.I.Êà÷óðèê

Ð å ç þ ì å

Â ðîáîòi Íåëüñîí, Ðåäæå òà Çåðòó÷å ïîêàçàíî, ùî àëãåáðà
ñïîñòåðåæóâàíèõ â êâàíòîâié ãðàâiòàöi¨ â (2+1)-âèìiðíîìó äå-
ñiòòåðiâñüêîìó ïðîñòîði-÷àñi ç òîðîì â ðîëi ïðîñòîðó ïîâ'ÿçà-
íà ç àëãåáðîþ Ôàðëi�Îäåñüêîãî U ′q(so3). Âèÿâëÿ¹òüñÿ, ùî ãðó-
ïîþ ñèìåòðié àëãåáðè ñïîñòåðåæóâàíèõ ¹ ìîäóëÿðíà ãðóïà òî-
ðà PSL(2,Z). Äëÿ öi¹¨ ãðóïè ìè áóäó¹ìî ïðåäñòàâëåííÿ, ùî

âiäïîâiäàþòü ñêií÷åííîâèìiðíèì ïðåäñòàâëåííÿì àëãåáðè ñïî-
ñòåðåæóâàíèõ.

Î ÑÈÌÌÅÒÐÈßÕ Â (2+1)-ÌÅÐÍÎÉ
ÊÂÀÍÒÎÂÎÉ ÃÐÀÂÈÒÀÖÈÈ

Í.Ç.Èîðãîâ, È.È.Êà÷óðèê

Ð å ç þ ì å

Â ðàáîòå Íåëüñîí, Ðåäæå è Çåðòó÷å ïîêàçàíî, ÷òî àëãåá-
ðà íàáëþäàåìûõ â êâàíòîâîé ãðàâèòàöèè â (2+1)-ìåðíîì äå-
ñèòòåðîâñêîì ïðîñòðàíñòâå-âðåìåíè ñ òîðîì â êà÷åñòâå ïðîñ-
òðàíñòâà ñâÿçàíà ñ àëãåáðîé Ôàðëè�Îäåññêîãî U ′q(so3). Îêà-
çûâàåòñÿ, ÷òî ãðóïïîé ñèììåòðèé àëãåáðû íàáëþäàåìûõ ÿâ-
ëÿåòñÿ ìîäóëÿðíàÿ ãðóïïà òîðà PSL(2,Z). Äëÿ ýòîé ãðóïïû
ìû ñòðîèì ïðåäñòàâëåíèÿ, ñîîòâåòñòâóþùèå êîíå÷íîìåðíûì
ïðåäñòàâëåíèÿì àëãåáðû íàáëþäàåìûõ.
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