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It is shown by Nelson, Regge and Zertuche that the algebra
of observables of quantum gravity in the (241)-dimensional de
Sitter space with space being a torus is related to the Fairlie-
Odesskii algebra Ué(so;,»). The symmetry group of the algebra of
observables turns out to be the modular group PSL (2,Z) of a
torus. We construct representations of this group, corresponding
to finite-dimensional representations of the algebra of observables.

Let wus briefly describe the approach to (2+1)-
dimensional gravity based on the first-order formalism
by Witten [1] and Nelson, Regge, Zertuche [2], see
also review [3]. The key idea of these papers is
the fact that (2+1)-dimensional gravity is a gauge
theory with Chern—Simons action. In [1], Witten gives
some arguments about impossibility to present (3+41)-
dimensional gravity as a gauge theory. Thus, the case of
(2+1)-dimensional space-time is specific. Despite this,
physicists working in this area believe that investigation
of (2+1)-dimensional case will shed light to problems of
quantization of (3-+1)-dimensional gravity.

The standard Einstein—Hilbert action in the 3D
space-time M (without matter) topologically equivalent
to R x 3 (R corresponds to time and a closed 2 D surface
Y corresponds to space) is

I =

1 3
167G /M d’z+/—g(R — 27),

where R is the scalar curvature and A is the cosmological
constant. Classical solutions of the corresponding
Einstein equation are constant curvature spaces M.

In the first-order formalism, the fundamental

variables are “dreibein” e, such that nabeuaeyb = Guv,
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Ny = diag(— + +), and the spin connection w,.
We set e}, and wﬂab to be independent. They can be
treated as components of 1-forms e® = ej,dz" and w* =
Leabew, pdxt. The action I (up to a constant multiplier)

2
becomes

I = 2/ e’ A (dwa + 1eabcwb Aw® — éeabceb A ec> .

" 2 6
In the anti-de Sitter case (that is, for A = —1/¢? < 0),
introducing the variables A(F)* = % £ (1/0)e®, we
rewrite the Einstein—Hilbert action I in the completely
equivalent form of Chern—Simons action with the
SO(2,1) x SO(2,1) gauge potential

IA®), A = Ies[AD)] — Tes[A)),
where

k 2
IoslA] = /Mtr<A/\dA+ §A/\A/\A)

and k£ = E\/ﬁ/SG. Variation of the action I in
e, and wf gives the equations of motion (which
contain the derivatives with respect to time of dynamic
variables) and constraint equations (which do not
contain derivatives with respect to time). It is easy to see
that dynamic variables are space-like components ef and
w, 1 = 1,2. The Poisson brackets of dynamic variables
on a slice of constant time can be read off directly from
the action I:

{wt@), )} = geun® e —),

{wt@.ef)} = {er@).ebw} =0
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Here, the variables w{(x), w§(x) can be interpreted as
coordinates and —e$(x)/2, e§(x)/2 as the corresponding
momentum variables. The variables ef and w{ do not
give yet the physical phase space, since it is necessary
to impose the constraint equations. As argued in [1],
the only gauge-invariant observables that do not vanish
when the constraints are imposed are global variables,
such as the traces of holonomies around possible non-
contractible loops v in ¥. In terms of variables A,Ei)”'(m),
1 = 1,2, Poisson brackets have the form

a 1 a
{A@), AP () } = £ em0% @ — ),

while variables A(*) commute with variables A(~)
These brackets, in turn, induce Poisson brackets [2]
among the traces of holonomies

+) _ (£)a i
Gg )_Pexp{LAi T.dx },

where T,, a = 1,2,3, are the generators of the Lie
algebra corresponding to the Lie group SO(2,1). Since
the connections A and A are flat (it follows
from the equations of motion of the Chern—Simons
action), the holonomies along two homotopic paths are
equal. The traces of these holonomies are of special
interest because after quantization they constitute the
algebra of observables in quantum (2+1)-dimensional
gravity [1]. This article is devoted to the construction
of representations of the symmetry group of the algebra
of observables in the case where X is a torus with one
boundary component (hole). Let 1 and 72 be two basic
cycles on the torus and

Tr G(H)

Rli = ;T GEY R;[ - Y1y’

7 ?

PTG, R =

Y2 ?

Then, as shown in [2],

{R Rf} +—(Ry — RfR;E), cyclic permutations.

il
In order to quantize this quadratlc Poisson algebra
we have to replace R R2 and R3 by operators R1 ,
R2 and R3 , respectlvely. Nelson, Regge and Zertuche
proposed [2] to replace the quadratic combination
from the right-hand sides of these relations by
the corresponding symmetrization, that is, RfERQi
(RFRF + RFRY)/2 and so on. Thus, the resulting
algebra of observables is defined by the relations

RERLet® — RERTeTY = +2isinIRT,

and cyclic permutations of ]A%I—L,Riﬁiét
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It turns out that this algebra is isomorphic to the direct
sum Ug(sos) ® U, . (so3), where ¢ = e?? and tan(f) =
—Hh/8¢. The first part of the direct sum corresponds to
fields A() and the second part corresponds to A(™)
In the de Sitter case (to which the article is devoted),
the situation is similar, but the quantized algebra of
observables is connected to U, (so3) with real ¢ = =

tanhf = ih/8(. The cases of surfaces ¥ with other
topology and the corresponding algebras of observables
are discussed in [4-6]. These algebras are also related
to deformed algebras. In [7], they are obtained in a
completely geometric way as Kauffman skein algebras
and interpreted as quantization of the Poisson algebra
of SL(2, C)-characters of the fundamental group of a
surface. The case of A = 0 was considered in [1, 3]. In this
case, gravity is equivalent to the Chern—Simons theory
with the gauge group ISO(2,1) (Poincaré group). The
quantization procedure was described there.

The Fairlie-Odesskii algebra Uj(so3) [8, 9] is an
associative algebra with the generating elements I, I5,
I3 and defining relations

NI, — VLI = I, (1)
Py — VL, = 1, (2)
"L — ¢ VAL = I, (3)

where ¢ is a non-zero complex number called
deformation parameter. In the limit ¢ — 1, the algebra
U,(so3) reduces to the Lie algebra sos. Substituting
I3 from Eq. (1) into Egs. (2) and (3), we obtain
other equivalent formulation of Ug(so3) in terms of two
generating elements I; and Is:

LI+ L — (¢ +q¢ YLD = -1, (4)

LI+ 1, — (g+q¢ YLl = —1s. (5)
The generators I; and I5 correspond to holonomies along
two basis cycles 77 and «2 on a torus. In what follows,
we suppose that 0 < ¢ < 1, thus restricting ourselves to
the de Sitter case.

Diffeomorphisms of a torus Diff(¥) induce
automorphisms of the algebra of observables,
that is symmetries of quantum (2+1)-dimensional
gravity. These automorphisms are generated by two
automorphisms S and 7. Their action on Uj(soz) is

uniquely defined by
S(h) =L, 8=,

T(L) =1, T(L)=q¢"*LI, —¢?N,.

ISSN 0503-1265. Yxp. ¢Pis. orcypn. 2002. T. 47, N 6
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These automorphisms satisfy the relations

S?=1, (ST)® =1, (6)
which are the defining relations for the modular
group PSL(2,Z) ~ SL(2,Z)/{1,—1} of a torus
(isomorphic to the quotient group Diff(X)/Diffo (%),
where Diffo(X) is the connected component of the
identical diffeomorphism in Diff(X)). This group is also
known as the mapping class group. It is very important
for quantum gravity to study the representations of
this symmetry group, which are induced from the
representations of the algebra of observables Uy (so3).

The algebra Uj(so3) has irreducible finite-
dimensional representations of classical and non-
classical type [10]. The classical type representations
are a deformation of spin [ representations of the Lie
algebra sog, the non-classical type representations have
no such analogs. In what follows, we consider only
the irreducible representations of the algebra Uj(so3)
which are of classical type with integral spin [, that
isl =0,1,2,..., on the (2] + 1)-dimensional space V.
These representations will be denoted by T;. The space
V; of the representation 7; is spanned by the basis
vectors |m), m = —I,—1 + 1,...,l, which are supposed
to constitute the orthonormal basis: (m/|m) = Jpm-
The action formulas for the operators T;(I;) and T;(I3)
are:

Ti(11)|m) = i[m]|m), (7
Ti(I2)|m) = 1Aim|m + 1) + 1Ay m—1|m — 1), (8)
where

[m][m + 1]

Atm = ([Qm] [2m + 2] [ = m]li +m + 1]) -

and the notation of g-number

€T

qm —q"
q—q?

[z] = )
is used.

If ¢ is an automorphism of U,(so3), then a
mapping 7j o ¢ from U,(so3) into the space of linear
operators on V; defines a representation of U,(s03).
If ¥ is an element of PSL(2,7), that is a sequence
of automorphisms S and T, then the representation
T, o ¢ is equivalent to T;. Tt is sufficient to
prove this statement in the cases ¢ = 7 and
1 = S. The proofs in the both cases are based on the
classification of representations of U, (so3) [10]. Proof
in the case v = 7 (resp. ¥ = §) is based on the
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observation that T} is a unique, up to equivalence,
irreducible (2! 4+ 1)-dimensional representation T of
U,(so3) such that the spectrum of operator T'(Iy) is
{=i[l], =i[l = 1],...,i[l]} (resp., such that Tr(T(I;)) =
Tr(T(I2)) = 0). Thus, for ¢ € PSL(2,Z), there exists
an intertwining operator Cy such that C;lTl(a)Cd, =
Ti(¢(a)), Ya € Uj(so3). It is defined up to a scalar
multiplier (it follows from the Schur lemma). Since
automorphisms S and 7 generate the modular group
PSL(2,Z), the corresponding intertwining operators Ts
and T give a projective representation of this group.
The mentioned scalar multipliers can be chosen to make
this representation to be an exact representation. Our
main task is to find this representation.

Let us find Cr. Since T;(7 (1)) = Ti(I1) is diagonal
(in the basis {|m)}) with pairwise non-equal diagonal
elements, it follows from the Schur lemma that C'7 is also
diagonal (in the same basis). Let (m/|Cr|m) = §p m/tm.
Further, we have

(m + 1Ti(T (I2))|m) = (i[m]g"/* —i[m + 1)g~"/?)x
x (m + 1|Ti(I2)m) = —ig™™/*(m + 1Ty (1) |m).
From other hand,

(m +1T(T (I2))|m) = (m + 1|C7 ' Ti(I2)Cr|m) =
=t twm (m + 1Ty (1) |m).

Thus, . t, = —ig7m /2

2
. 3 2
lmqm / to.

, and therefore t,, =

Let us find Cs. To this end, it is useful to diagonalize
operator T;(I2). The eigenvectors of this operator have
the form

l

S an(@)lm),

m=—I1

) = (10)

with eigenvalues i[z], that is,

Ti(I)|z) = i[z]|z). (11)

Our next task is to find all the values of x and
matrix elements a,,(x) of the transformation matrix.
Substituting Eq. (10) into Eq. (11) and using the
action formula, Eq. (8), we obtain the recurrent
relation

Al,n—lpn-‘rl(x) + Al,n—l—lpn—l(x) - [x]Pn(x)a (12)
where n = 1+ m, P,(x) = ap—i(z), n = 0,1,2,...,2L.
Since A;_;—1 = A;; = 0, the relation has a solution
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only at some fixed x. Now we rewrite this relation
as

[21=n] Py 1 (2)+[n] P, (x) = (¢ "+¢ ) [2] P} (2),(13)

where functions P/ (x) (in fact, they are polynomials of
[x] if Py(x) is taken to be independent of z) are defined
as

(20 — 1121 — 2@)”2 , (14

Pul) = ( == ) o)

and [r]! = [r][r—1] - - [2][1] is the definition of ¢-factorial.
Using the definition of g-numbers (9), we obtain from
Eq. (13)

1— q2n—4l (1 _ an)q—Ql ,

P,y (z) =

1+ g2n—2l PnH(x) T 4 g2n-2l

=(¢" — ¢ ")q'P)(a). (15)

The obtained recurrent relation has the form of a
recurrent relation for g-Racah polynomials of discrete

variables (see [11]) if one imposes Pji(z) = 1
Thus

-y Sa¥Tt1! -n aﬁqn-l-l
P () = q Y, v0¢" T, 7", -t
n( ) 4¢3( aq, ﬁ5q, vq q,q
where « = = —y = =6 = ig7"" Y2 and y = | — .

We have used the definition of basic hypergeometric

function:
a1,a2,...,0r41
r+1¢r ( ’b ’ ’b ; q72> =
1y-+-5Yr
R ¢ P I
s Ur+4-1, q)n M

--abr§q)n

_ i (a17a2,..
(q>b1>- ’

n=0

where (c1,¢2,...,c659)n = (c1,0)n(c2,@)n - (Ck; @)n,
(G@)n=010-c)(1—qc)---(1—¢"c).

The orthogonality relation for functions P/ (x) has
the form (see [11])
21 21
> wy Pl = y)Pi(l = y) = Survy, ' > wy, (16)
y=0 y=0

where

v = 05:9),(1 —75q2y+1)(aq,vq7ﬁ5q;q)y(aﬁ v =
Y (g9)y (1 = v6q)(0g,v6q/ o, vq/ B; )y I
2t — 1) [20 — 24

W2l —y)! [1—y]’
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o — (@B @)n(l - aﬂqznﬂ)(aq,vq,ﬁéq;q)nwsq
" (g1 — aBq)(Bg, aBa/v,2q/8;q)n

121 — 1]1[21 — 2n]

)2l =n)l—n]"

Note that Eq. (14) has the form P,(z) = v,l/QP,’I(q:).
Taking into account (see [11]) that

21 21 2
RN
20 = 2 (5=

where [k]!! = [k][k — 2] - - [2](or[1]), [O]!! = 1, we rewrite
Eq. (16) as

l

Z W(x) Py (2) P () = Onk,

r=—1

where

o w01 [2a] =1\

b(z) = Zil:owy =2l + 2] [2] (2[21—2]!!) '

Therefore, s,,(z), m = —I,—l+1,...,1, defined as

() = (10 2(a) Pra (o) = G
et [24] [2m] i

x(=1) ([x][lm]![l+x]! [m][lm]![l+m]l> %

-1 —1— —m—1 -1
+m7 —q z7 q m y —q tm

><4¢3( g2 g2 g/
) b

; q,q), (17)

satisfy the orthonormality condition

l

Z Sm (@) $m/ () = Oy

r=—1
that is, s,,(x) are the matrix elements of an orthogonal
matrix. Hence,

l

Z Sm(2)sm (') = Spar.

m=—1
These relations lead to orthonormality of the set of basis
vectors

l

S sul@)lm),

m=—1

|z) = x=-1,—-1+1,...,1. (18)

Note that these vectors are proportional to |z), and
therefore they are also eigenvectors for Tj(I2) with the
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same eigenvalues i[z]. For the matrix elements s,, (), we
have $,,(z) = s;(m). To make this symmetry explicit,
we use the Sears transformation (see formula (II1.15) in
[11]) for the series 4¢3 from Eq. (17). The result is

[1]1[20 — 1)!

sm(@) = Spr o ¢

[22] [2m]
. ([m][l 2\l + ]! [l — m![l + m)!

1/2
) (_1)m+7rzx

—l+z —l—x —l4+m —l—m
—q y 4 y —4 )
X _ . . 5 q, . (19
4¢3( g2, igTH/2, _igTiH1/2 q q) (19)
Let us show that Cs may be defined as
l
Cslm) = Z Smr (m)|m’). (20)

m/=—1

Indeed, we have T;(I2)Cs|m) = im]Cs|m), and
therefore (m/|Cg'Ti(Is)Cs|m) = (m/|Ti(I;)|m). Thus,
C5'Ti(I;)Cs = Ti(I;). Since Cs has an
orthogonal and symmetric matrix, we have
C5' = C¥ = Cs. Using this fact, the former relation
can be rewritten as Cngl(Il)Cg = Ti(I3). Thus, Cs
ig, indeed, an intertwining operator corresponding to
automorphism S. Moreover, we automatically obtain
that Cs satisfies the first of the defining relations (6)
of PSL(2,7Z).

In order to obtain the representation of the second
of relations (6), we have to fix the matrix element ¢y of
operator C'7 in an appropriate way. First, we rewrite the
second of the defining relations (6)

CrCsCrCsCrCs =1
in the form
CsCrCs = C7'CsCrY,

where we have used C% = 1. Now we take the matrix
elements (m/|---|m') of the both sides of this relation.
We obtain

l
Z tosm(m”)qmg/zimsm(m') _
m=—1
_ ta2q7(m'2+m”2)/2i7m'7m”Sm/ (m//).

(21)

It follows from the explicit formula (19) for s,,(x) that

]! (U= 1\ 2
0= a0 ()
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X(WWJZ%+MJU%

Fixing in Eq. (21) m’ = m” = —[ and using

[ —1!
s() = g

we rewrite Eq. (21) as

120 — 11 <
to 5 Zl

m=—

’7er2
imq = (" +q7™)

The left-hand side of this relation is equal to tog'¢—1/2.
Hence, to = (—1)'q~"*+1)/6 and the operator C7 is

Crlm) = (=1)lg~1ED/65m g™ /2 ), (22)

Then the intertwining operators Cs and C7 given by
Eqs. (20) and (22) satisfy the defining relations for
PSL(2,7Z), giving a representation of the modular group
of torus, which is the symmetry group in (2 + 1)-
dimensional quantum gravity with space being a torus.

The investigation described in this article is close
to the investigation made by R. Kashaev in [12],
where he considered the spaces of general genus and
infinite-dimensional representations of their mapping
class groups.
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PO CUMETPII B (2-+1)-BUMIPHIN
KBAHTOBI I'PABITAIIIT

M.3.Iopeos, 1.1.Kauypuk
Peszwowme

B po6oti Henbcon, Pemxke Ta 3epryde mokazano, mo ajirebpa
CIOCTEpeKyBAaHUX B KBAHTOBIH rpasitanii B (2+41)-BuMipoMy me-
CiTTEPiBCHKOMY MPOCTOPI-9aci 3 TOPOM B POJIi TPOCTOPY MOB’si3a-
Ha 3 anredbporo Papni-OgecbKoro Ué(s03). Busgsnserscs, mo rpy-
O cUMeTpiil ajnredpu CroCTepe’KyBaHUX € MOAYJISIPHA I'PYIa TO-
pa PSL(2,Z). Ina uiel rpynu Mu GyAyeMO HOpeCTABIEHHS, IO
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BiAMOBITaI0Th CKIHYEHHOBUMIPHUM TIPEICTABJIEHHSIM aJarebpu Cro-
CTEPEKYBAHUX.

O CUMMETPUSX B (2+1)-MEPHOIT
KBAHTOBOIT I'PABUTAIIAN

H.3.Hopzos, U.U.Kavwypuk
Peszmowme

B pa6ore Henbcon, Pemxe um 3epryde mokaszaHO, d9TO ajred-
pa HAOJIOJAeMBbIX B KBAHTOBOU rpaBuTanuu B (2-+1)-MepHOM 1e-
CHTTEPOBCKOM MPOCTPAHCTBE-BPEMEHU C TOPOM B KAYECTBE TIPOC-
TPaAHCTBa CBA3aHa ¢ anrebpoit Papan—Opecckoro Ué(s03). Oxka-
3bIBAETCsl, YTO TPYIION CHMMeTpuil aJareOpbl HAOJIFOJAEMBbIX siB-
sgerca MopynsapHas rpymnna topa PSL(2,Z). Ina 910 rpynnbt
MBI CTPOMM IIPEJCTABJIEHUs, COOTBETCTBYIOIME KOHEYHOMEDHBLIM
MpeCTaBJIeHUIM aJIre6pbl HaO 0 1aeMbIX.
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