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The projector decompostion of R-matrices is discussed in
general and used to construct quantum spaces. This method
of constructing quantum spaces is applied to the case of the g¢-
deformed Lorentz group.

1. Introduction

Non-commutative structures have attracted more and
more interest in the last few years [1, 2]. In this talk,
I want to introduce quantum groups as g-deformations
of the function algebra over classical Lie groups and
comodules to such quantum groups. The process of g-
deformation is well established [4]. As examples, we want
to consider the quantum groups SL,(N), SO,(N), and
the quantum Lorentz group. The aim is to formulate
coordinate spaces whose underlying symmetry structure
is not a Lie group any more, but a quantum group.
Therefore, these coordinate spaces are identified with
comodule algebras with respect to the relevant quantum
groups. In this way, the notion of coordinate spaces is
generalized. In the limit ¢ — 1, the usual commutative
coordinate spaces are regained. In general, Hilbert space
representations of the coordinate space algebra will
have a discrete spectrum. This approach can therefore
certainly lead to a regularization scheme for gauge
theories. Gauge theories on non-commutative spaces will
resemble a gauge theory on some lattice. A lot of ongoing
work is concerned with formulating gauge field theories
on non-commutative spaces.

2. Quantum Groups

Let us consider the function algebra over some classical
matrix group of n X m square matrices, which is most
interesting from a physical point of view [3, 4]. The

algebra is generated by the coordinate functions
th, ij=1,...,n. (1)

The g-deformation of this commutative function algebra
Ayg is defined as

_C<ty> @)
=7

where Ip is a 2-sided ideal generated by the (RTT)
relations

Ay

Riptit] = thtm B (3)

2 2

where R is a n? x n? matrix (depending on the real
deformation parameter q) satisfying the Quantum-Yang-
Baxter-Equation (QYBE)

Ri2R13Ro3 = Ro3Ri3 12, (4)
where, e.g., Ri3/7* =7 Rik.

2.1. Quantum Planes

Let f(R) be a polynomial in R = PR, Pu®@v =vQu
(permutation matrix), v,u € C". Denote by I; the
2-sided ideal in C < z!,...,2" > generated by the

relations
FR)Y s™ @™ =0, i,j=1,...,n, (5)

summing over repeated indices. The quotient algebra

H = M is called quantum plane, due to the

left co-action

0:H — A;®H,

éz') = tie.

The RTT relations (3) imply

FIRF ] = 1) f(R) (6)
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Define an algebraic structure on H via
f(R)Y z™ @™ = 0. (7)

The co-action of A, is compatible with this structure on
H, since we have

FR),6(2)™ © 3(@)" = 0. (8)

The matrix R is the g-deformation of the permutation
matrix. SO we look at the spectral decomposition of
R, which will consist of quantum analogues of the
symmetrizer and antisymmetrizer. In analogy to the
commutative coordinates, we choose f(R) = P4, where
P, is the "antisymmetrizer". In the limit ¢ — 1, we have
ordinary commuting coordinates.

Paizk @zl = 0. (9)
3. SL4(N)

Let us consider the g-deformation of the function algebra
over the Lie group SL(N,C) as a first example. Let

R :SLy(N) ® SL,(N)

!
C

be the dual quasitriangular structure of SLy(N). Then
the R-matrix is defined by
Ry = R(t; @), (10)

where t! is a coordinate function [3]. Again we have

R := PR. The N2 x N2 matrix R has - for the defining
representation - the spectral decomposition

R:qPS_q_lpAa

where
R+q¢"1 o

Ps = 7(]1 — symmetric projector,
q+q-
~R+q1 . o

Py = 7q1 — antisymmetric projector.
q+q-

3.1. Comodule Space

The coordinate space, whose underlying symmetry
structure is given by the quantum group SL,(N), is
defined by relation (9)

Pipx®z =0,

(11)
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which generates the ideal Ip,. The comodule algebra is
given by

C<at,...,z" >

H= , 12
= (12)
Explicitly, the generators z* fulfill the relations

zizd =qalz!, 1<i<j<N. (13)

SL,(NV) is a Hoptf algebra with the following linear
structure maps which generalize matrix notation,

Aty =t @ th, (14)

e(t;) = 5;, (15)
_( d -q'b

say=( 2, 7). (16)
Z' N

T= (1), (17)

with the comultiplication A : SLy(N) — SLy(N) ®
SL,(N), the counit
€ : SL;(N) — C and the antipode S : SL,(N) —
SL,(N). ¢ is the deformation parameter. And we have
the following limit

SL,(N) — SL(N,C), for ¢ — 1.

4. SO4(N)

The R matrix of the quantum group SO,(N) has the
following spectral resolution, for N > 2 and (1+¢?)(1+

¢ "(1-q¢ ) #£0,

R=qPs—q'Pa+q VP, (18)
where
po - =@M -gHR-gM1 (19)
(a+ag—g—N) 7
P B RQ _ (ql—N + q)R + q—N+21 (20)
4 @tq Da—a )
- s
—(q— -1
p = H-le—d )R (21)

(PN —q)gt+¢ )

Again SO4(N) is a Hopf algebra with the antipode
map
S(T)=cCcT'Cc™, (22)

where C' is the metric of SO,(N).

ISSN 0503-1265. Yxp. pis. ocypn. 2002. T. 47, N 3



PROJECTOR DECOMPOSITION OF R-MATRICES

4.1. Comodule Space

Again the coordinate algebra, whose underlying
symmetry structure is SO4(N), is defined by the
relations

Pyx @z =0. (23)
The coordinate algebra is given by
1 n
H:(C<a: yeeas X >. (24)
Ip,
_ (n_%an_%a"'a_n+%)a
(pl’“'”’N)_{ m—1,n—2,...,1,0,0,~1,...,—n+ 1),

5. @g-Deformed Lorentz Group

We define the g-deformed Lorentz group as the tensor
product of 2 different copies of SL,(2) quantum groups

5]

—~—

A, = SL,(2) @ SLqy(2). (28)

In order to differ between the two identical copies,
we have introduced the “tilde” above the former. The
construction in [5] follows the classical construction of 4-

vectors using 2-spinors. SL,(2) has to be identified as the
Hermitian conjugate of SL,(2). We have the following
relations:
Ryt i

pij 7k —
RYEE =

ti t] Ry, (29)
t ] Ry, (30)

which are just saying that SL,(2) and SL,(2) are
quantum groups with “braiding” ]A%, generated by the
coordinate functions t and t%, respectively. Further one
needs to know consistent relations between the two
algebras. They are defined by [5]

Rkt =t ] REL. (31)

5.1. Comodule Space

The generators of ¢g-deformed Minkowski space, i.e., the
Ag-comodule algebra (cf. (28)), are given by

XU = gigd, (32)
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Eqn. (23) reads in explicit form

zizd = gzt 1<i<j<N,i#j (25)
i'—1
it = izt 4 (¢ —1) Z qpi’*pja:ja:jl — (26)
=1
q2 - T
— W qp’lX CX, (27)
where ! = N+1—14,j’=N+1—-jand
for N =2n+1
for N = 2n.
with the left co-action
S(XUY =1t @ XK. (33)

Let us define the generators of the g-deformed Lorentz
group

AP =1t (34)
We want to compute the algebra relations in view of
(32). To this aim, we need to calculate the Rj-matrix
for the g-deformed Lorentz group and decompose it into

projectors. From (29—31) and the requirement

ij A mn p(kl)(o ~(i7)(mn o
A AL, R p)(rs)(tu) = R )(kl)(op) ARLAZR (35)

we get the Rp-matrix of the g-deformed Lorentz
group ...

111
l

~ (i7)(kl 1/\‘k ik ~ il a1
R(Lz])( )(k’l’)(’i’j’) = ER‘;”]‘” Rkllci// Rl]//j/ R ! 14! (36)

Ry has the same spectral decomposition as the R-matrix

of SO, (4):

. N 1 . 1
. 1 1
Ry =qPs — —Pa + — P, (38)
q q
Ps =
P4 = dependence on Ry, as in the SOg(4) case
P =
(39)

However, Ps, P4, P, and therefore Ry are
numerically different.
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5.2. q-Deformed Minkowsk: Plane

Now that we have the spectral decomposition of R L, wWe
are able to calculate the expression

PyX®X =0. (40)
First of all, let us use the light-cone coordinates
(A,B,C,D) = (X?,X3, X}, X2). In this basis, relations
(40) read

AB=BA+ (¢ ?-1)CD+ (¢>-1)DD,
AC =CA+ (¢ -1)AD,
BC =CB+ (1-q¢?)DB,

BD = ¢’DB, (41)
DA =¢*AD,
CD = DC.
Redefinition of the coordinates
X0 . C+D
1
n/aty
Xt .= A,
Vi
X" :=./4B,
10 —¢D
X3 = qil (42)
Vaty
leads to the following relations:
XOX3 — X3X0
Xox+ = x+XxO°
XX~ =Xx"XY,
X3XT - XX =(1-¢*)XTXO,
X X3 - 2X3X™ =(1-¢)XX",
1
XTX™ - X Xt =(¢— 2)(X?X? - X3X"). (43)
q

However, one can construct another R-matrix for
the g-deformed Lorentz group, y; Ry,. The second matrix
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I IJA%L has beenAconstructed in [6], where it was found by
decomposing Ry, into projectors and taking a different
combination of them. In terms of the SL,(2)-R-matrix,
we have [7]

Ilé(Lij)(kl)(k’l’)(i’j’) = 1?‘1%23‘1’;25’01?3,1 R, (44)
Both R-matrices are needed to introduce derivatives

(i.e., momenta) [6]. In terms of projectors, the two R
matrices read

1Ry = qPs +qPy — ¢*P_ — ¢ 1Py,

Rp=qPs+q *Po—q 'P-—q 'Py,

where Py = Py + P_.

6. Summary and Outlook

We have introduced quantum groups as g-deformation
of the function algebra over Lie groups and coordinate
algebras whose internal symmetry is given by quantum
groups. The most important example we have considered
is g-deformed Lorentz group and ¢-deformed Minkowski
space. So far these facts are not new. The intension
of this talk is to introduce this method of constructing
quantum spaces and to introduce g-deformed Minkowski
space. In this respect, this talk should give a better
understanding of the talk of my colleague Fabian
Bachmaier, g-Deformed Minkowski Space. He will talk
about representations of the Lorentz algebra and the
Minkowski algebra (41). Ongoing research is concerned
with constructing a field theory on quantum spaces, cf.
[8 — 10] and references therein.
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*-Products on Quantum

[IPEKIIHE PO3KJIAJJAHHS R-MATPULLD
1 ¢-JE®@OPMOBAHNI TPOCTIP
MIHKOBCBHLKOI'O

M. Boazenanm
Pesmowme

PosrngnyTo 3aranpHuil BUNAJOK HPOEKIIHHOTO pO3KJIaJaHHS R-
MaTpHUIb Ta HOTO BUKOPUCTAHHS [JIsI TOOYJOBU KBAHTOBUX IIPOCTO-
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piB. 114 g-nedopmoBanoi rpynu JIopeHIia 3aIpOIOHOBAHUI METOT
3aCTOCOBAHO /ISl TOOYJOBU IPOCTOPIB B SIBHOMY BHUIJIS.

ITPOEKIIMOHHOE PA3JIO?KEHUE R-MATPUI]
1 ¢- IEOOPMUPOBAHHOE ITPOCTPAHCTBO
MMHKOBCKOI'O

M. Boazenanm
Pezwowme

PaccmarpuBaerca o0mui#t caydail TPOEHKIIHOHHOTO PA3JIOXKEHUS
R-MaTpuIl u €ro UCIOIb30BaHue A1 MOCTPOEHNI KBAHTOBBIX IIPOC-
TpaucTs. s ¢-gedbopmuposannoit rpynmsl JIopenna npeaioxen-
HBI MeTOJ IPUMEHEH /I IOCTPOEHH KBAHTOBBIX IIPOCTPAHCTB B
SBHOM BHJE.
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