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In the present paper, we construct special quasigraded so(n)-
valued Lie algebras on higher genus algebraic curves. Using them,
we find a new Lie theoretical interpretation and new Lax type
representations with spectral parameter for the generalized Clebsh
and Neuman systems.

1. Introduction

Graded Lie algebras play important role in the theory of
integrable Hamiltonian systems [1, 2]. This is explained
by the fact that loop algebras admit the so-called
Kostant—Adler scheme [3], that is, by far the mightiest
method of producing a wide set of mutually comuting
integrals of motion.

In [4, 5], new examples of infinite-dimensional
Lie algebras that admit Kostant—Adler scheme were
constructed. They coincide with the special so(3) valued
algebra of meromorphic functions on an elliptic curve.

In our previous papers [7, 8] we gave the higher rank
generalizations of the algebraic construction of [5]. In
more detail, we have constructed Z quasigraded infinite
dimensional Lie algebras gp, associated with higher
genus curves H, and classical matrix Lie algebra g.
Using them, we have produced new integrable finite-
dimensional systems, generalizing Steklov—Veselov and
Steklov—Lyapunov integrable systems.

In the present paper, we consider the special
degeneration H) of the curve H,, corresponding Lie

algebras so(n)y,, and integrable finite-dimensional
Hamiltonian systems associated with them. It occurred
that such integrable systems as generalized Clebsh and
Neuman systems could be naturally obtained from these
algebras. It is necessary to mention that generalized
Clebsh and Neuman systems could be also obtained
using the approach of [1, 2] based on loop algebras,

but, in this case, in order to obtain these systems,
an additional Hamiltonian reduction [2] is needed. On
the contrary, in case of our algebras, no additional
Hamiltonian reduction is needed for obtaining Clebsh
and Neuman systems. That is why, we consider our
algebras to be more naturally connected with these
systems.

The structure of the present article is the following:

in Section 2, we describe the Lie algebras s?)\(/n) 7, and

P

so(n) g , their dual spaces and invariants of coadjoint
representations. In Section 3, a general framework of
obtaining integrable Hamiltonian systems using the
above algebras is exposed, and some properties of
these systems are investigated. In the last section, the
examples of generalized Clebsh and Neuman systems are
considered.

2. Special Quasigraded Lie Algebras

A hyperelliptic curve embedded in C*. Let us
consider the following system of quadrics in the space

C™ with the coordinates wy, W, ...., Wy:
2 2 L.
w; —w; =aj —a;, i,j=1n, (1)

where a; are arbitrary complex numbers. The rank of
this system is n — 1, so the substitution

n

2 _ —

w; =W — aq, y—Hwi
=1

solves these equations and defines the equation of a
hyperelliptic curve H. Hence, Egs. (1) define embedding
a hyperelliptic curve H in the linear space C".

Ezample 1: In the n = 3 case, all of these objects
have the well-known analytic description. Indeed, in
this case, the curve under consideration is elliptic. Its
uniformization is made by the Weierstrass p -function

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.

ISSN 0503-1265. Yxp. pis. orcypn. 2002. T. 47, N 3

293



T. SKRYPNYK

and its derivative: w = p(u), y = 1/2p'(u). Functions
w; are expressed via Jacobi elliptic functions.

Canonical basis of so(n). Let g denote the algebra
so(n) over the field R or C. Let I; ; € Mat(n,R) be a
matrix defined as follows:

(Zij)ab = 0ia0jb.

Evidently, a basis in the algebra so(n) could be chosen
as: X;; = Ii; — 15, 1,5 €1,...,n, with the commutation
relations

(X s Xi] = Ok,j Xip — 610Xk ,j + 651Xk — 61,0 X1,

and “skew-symmetry” property X;; = —Xj;.

Lie algebras on the curve #,. For the basic
elements X;; of the algebra so(n), we introduce the
following algebra-valued functions on the curve H,, or,
to be more precise, on its double covering:

X7 (w) = Xij @ wmwwj, i,j € 1,n; meZ (2)
The next theorem holds true:

Theorem 1. (i) Elements X[, , r € Z form Z

quasi-graded Lie algebra so(n),, — with the following
commutation relations:

X7

s __ r+s+1 r4+s+1 r4+s+1
zjanl] = 6ijil - 5ilej + 5lem‘ -

sl + + +
—(SikX;l ST+ aiéilX,:j i ajéiji’} S+ aiéikX;l s—

—a; 0 X (3)

(i) Algebra MATT)H" as a linear space admits a
decomposition into the direct sum of two subalgebras:
so(n)Hn

—~+

s0(n)y, andso(n),, —are generated by the elements X

= so(n);" + so(n),,, , where the subalgebras
o(n)-, 0
ij7
and Xigl, correspondingly.

(See [8] for the proof of Theorem 1).

The algebras constructed in Theorem 1 depend on n
complex numbers a; — branching points of the curve H,,.
We may impose different constraints on the numbers a;,
i.e., consider different degenerations on the curve #H, in
order to obtain different algebraic structures that will
lead to different integrable systems as a result.
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Special degeneration of the curve H, and
“anisotropic affine algebra”. Let us consider special

case of the algebra so(n),, in the case where one of
the branching points a; turns to zero. Let us put, for
definiteness, a,, = 0, a; # 0 for i = 1,n — 1. We denote
such curves #H! . Let us introduce the following notations:
X=Xy @wmwiwj, V"= X @ w™ P, (4)
where i,j € 1,n —1; m € Z.
The following corollary of Theorem 1 holds:
Corollary 1. Generators Y;", X7, where i, j,k,1 €
1,n—1, s,r € Z, satisfy the following commutation
relations:
[X3

r1 s+r+1 s+r+1 s+r+1
ijs Xkl] = 5ijz‘l - 6ilej + 6leki -

1
—5ikX;l+r+ + aiéilX,‘:j’" — ajéijf,“ + ai(sikX;l—i_r_

—a;0u X5, (5a)
[Xisj’ykr] — 6kj)/;s+r+l _ 5ikyvjs+r+1 _ aj(skjy;'s-i—yl"‘
+aiin Y, (5b)

[)/;'sa Ykr] = X]':?_r—i_l: (5C)

and for%basis in the Z quasi-graded, Zs graded Lie
algebra so(n) 4, .

Remark 1. Special attention devoted to this algebra is
explained by the fact that it will produce a hyperelliptic
Lax pair for the generalized Clebsh and Neuman
systems. As will be shown below, it coincides with
the higher-rank generalization of the so(3) “anisotropic
affine algebra” introduced in [4] in connection with the
Landau—Lifshitz equations.

Example 2. Let us consider the n = 4 example. In
this case, the commutation relations (5) could be much
more simplified by introducing a standard basis in the
$0(3) C so(4) algebra. Putting X = €;;,X;;, we obtain
the following commutation relations for 50(4)7-121:

[XZT,XJS] = Giij]:Jrerl + EijkakX,:Jrs, (6&)

1
[Xz?nv Y]r] — eijkykr-i-s-i- + eijkajykr-'_s,

(6b)
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[)/;'T7 Y;s] X,:JFSJA.

= €ijk (6¢)
Introducing new notations A2 = X', A?’"‘l = Yj’"_l,
we see that,/lig to a minor change of quasi-gradation,
the algebra 50(4)7-111 coincides with the “anisotropic affine
algebra” in the form of [4].

Remark 2. It is, of course, possible to consider
other degenerations of the curve #H, and consider
correspondent algebras. In particular, when all numbers
a; — 0, i.e., in the rational degeneration, we obtain loop
algebras. Their usage in the theory of integrable systems
was extensively studied in [1, 2].

Coadjoint representation and its invariants. In
order to define Hamiltonian systems, we have to define

o~ %
the coadjoint representation and space so(n), . We

assume, that so( n)y,  Cso(n)®A, where A is an algebra
of functlons on the double covering of the curve .
Let ( , ) denotes the standard Killing—Kartan

n
form on so(n) — for the elements X = Y z;;X;j,
ij=1
Y = > Xy, we have (X,Y) = 1/2Tr(XY) =
ij=1
n
> x;yij. Let us define pairings between L(w) €
ij=1

o~k

so(n),, and X(w) € M/\E)H" as follows:
(X (w), L(w))k = resy—ow™ y™" (w)(X (w), L(w)). (7)
We denote these pairings by ( , )x. Under all of the

pairings described above, the Lax operator will have the
following form:

S

meZ i,j=1

ij
wj w]

(k)

where the coefficient functions [;;
symmetry conditions l( ) = l;f).
It follows from the exphcit form of the pairing that

satisfy the skew-

the action of the algebra so(n), —on its dual space

o~k

so(n),,, coincides with the commutator:
ad () L(w) = [L(w), X (w)], (9)

that, in turn, entails the next statement:

Proposition 1. Functions H>*(L(w)) = trL(w)?*
where k € 0,[n/2], are generating functions of the
invariants of the coadjoint representation.
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Conclusion. The constructed Lie algebras admit
decomposition into the direct sum of two subalgebras
and possess the infinite number of invariant functions.
These two properties permit their usage in the theory
of integrable Hamiltonian systems. We will demonstrate
this in the next section.

3. Hamiltonian Systems via Quasi-Graded

Algebras

In this section, we will construct Hamiltonian systems

that correspond to the algebras so(n),, ~and so(n),
To do this, we define Lie—Poisson structures and Lie—
Poisson subspaces. All formulas will be explicitly written

in the case of the algebra sd/\_n/)ﬂn. The corresponding

formulas for so(n )H, could be obtained taking the
continuous limit a,, — 0.

—~— ¥

Lie—Poisson structures. In the space so(n),, , one
can define many Lie—Poisson structures using pairings
(, ) K, for different K They define brackets on

P(so(n)Hn) (and P(so( )H' )) in the following way:

{F(L(N), GLA)}x = (L), [V F, VG Kk, (10)

—n+K

where VK F(L(N\) = > - OF
K nez i,j=1 al(n)
From Proposition 3., the next statement follows:
Proposition 2. Functions HE (L(w)) are central for
brackets { , }k.
Let us explicitly calculate the Poisson brackets (10).
It is easy to show that, for the coordinate functions ll(»;-n),
these brackets have the following form:

{1, 1k

— 6kjll(l11+me71) . 6ill](c1]1‘+m7K71)+

+(S ln+m K—1)

— Ol gl -

—a0l T b aidd T — g

(11)
Poisson subspaces. Let us now consider the
following subspace My C so(n),, :
N+1 N i
My = Z(so(n)ﬂn)m, where (so(n)q, )m = Zl” s
m=1
295
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w™ Ty (w)

w;w;

The following proposition holds true:

Proposition 3. Brackets { , }xk, where K =0 and
K = N +1, could be correctly restricted onto the space
Mny.

Proof. From the explicit form of the Poisson
brackets (10), it follows that the subspaces M o =

[ee] —_~— ¥ N-‘rl —~— %

> (so(n)y Jm and M_ Ny = > (so(n)y )m are

m=1 m=-—00

Lie—Poisson subalgebras with respect to the brackets
{, }oand {, }n41, correspondingly ( it is not difficult
to show that these Poisson algebras are isomorphic
to so(n),, and so(n);n). The explicit form of the
Lie—Poisson brackets also implies that, for any integer

i (Sa\_n/);")m and j—oo,p =

m=p

m — y
where V7' = ij-

p, subspaces Jp.oo =

i (so(n);" )m are ideals in the Lie—Poisson subalgebras
—00
described above. That proves Proposition 3.

The following theorem is the most important for
application in the theory of integrable systems.

Theorem 2. Let functions {HY (L)} be defined as
in Proposition 3. Then they generate a commutative
algebra with respect to the restriction of the brackets
{, }oand {, }ns1 onto My.

Proof. From the explicit form of the Poisson
brackets (10), it follows that the subspaces Mj o =

00 o~ * N+1 o~ %

Y. (so(n)y Jm and M_o v = > (s0(n)y )m along

m=1 m=—0oQ

with the complementary subspaces are also Lie—Poisson
subalgebras (with respect to the correspondent brackets
{, }o and {, }n+1). Hence, from the Kostant—Adler
scheme, it follows that the restriction of the invariant
functions HY (L) onto the subalgebras (Mi , {, }o)
and (M_oon, { , }wny41) forms a commutative
subalgebra with respect to the correspondent brackets.
Now, to prove the theorem, it is enough to take into
consideration that the subspaces (My, { , }o) and
(Mn, {, }~nt1) coincide with the quotient algebras
Moo, N[ T=00,0 O M1 0o/ IN+2,00, and the projection
on the quotient algebra is a canonical homomorphism.

That proves the theorem.

It is necessary to emphasize that, among functions
{HZ (L)}, there are “geometric invariants” — Casimir
functions of the the Lie—Poisson brackets { , }o
or {, }~n+1 and commuting integrals that generate
nontrivial flows on the correspondent coadjoint orbits.
The following theorem enables one to distinguish
Casimir functions from the nontrivial integrals:
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Theorem 3. Let us consider functions {H2"(L)}
restricted to the subspace M y. Then
(i) functions H2"(L) are Casimir functions of the
brackets { , }o if
2r—1)N+4+r(n—2)<s<2rN +r(n—2),

(ii) functions H2"(L) are Casimir functions of the
brackets { , }ny1 if

0<s<N,

(i#3) for the arbitrary coordinate function lg-l) the
following identity holds true:

(U0, H2 Yo = {HZ nyp1, 1 v

Proof. Let )A(;ZT, 17,31 be vector fields that correspond
to the brackets { , }o and {, }ny1:

XPF(L(w)) = {107, F(L(w))}o,

Y F(L(w)) = {17, F(L(w))}n+1.

Proof of the theorem will be based on the following
Proposition 4. Let L;j(w) = y(w)(wsw;)”

N+1
x Y lgn)w
m=1

Tx

—L. The following identity holds true:

WiW; (wl)?fj + wliN*l?ilj)F =

oF
mn () 0Ly (w)’

Z ity L

m,n=1

where C((Z?f()kl) are the structure constants of the algebra
so(d).

Proposition 4 is proved by direct calculations.
Now, to prove Theorem 3, it is enough to take into
consideration that H™(L) = trL"™(w) is a Casimir
function of g, hence:

Z iy Eom

m,n=1

OH"(L(w))

n(w) dL(w)

0,

to expand H"(L(w)) in the power series in the spectral
parameter w, and to compare the summands with the
equal degrees of w.
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Hamiltonian equations and Lax type

representation. Let us consider Hamiltonian

equations of the form:

™ . .

i = U ) (12)
s, K

where { , }x are the brackets { , }o or { , }nt1

restricted to the subspace My and ts x 1s "time” that

corresponds to the Hamiltonian H¥ and brackets { , } k.
From item (iii) of Theorem 3, the next corollary follows:

Corollary 2. Hamiltonian equations for the
Hamiltonian HI" and the brackets { ,}o coincide with
the Hamiltonian equations for the Hamiltonian H\ x
and brackets { ,}ni1:

al(m)

gy = U I o = {HE e (G, 1 v,

(13)

Let us re-write the Hamiltonian equations (12) in
the Lax form. From the general considerations based
on the Kostant—Adler scheme [2], it follows that these
equations could be written in the Lax form:

dL(w)
dtk

= [L(w), M g (w)], (14)

where L(w) € My and operator M(w) is defined as
follows: Mf’K(w) = Px Vg HF(L(w))|pmy , where

S .

m=—00 ij= 1

7m+K

VrHNL (15)

l(m)

is an algebra-valued gradient of H considered as a

o~k

function on the whole space so(n),, , K = 0 or K =
N+1land Py = P_, Py4+1 = P4, where P, are projection
—t

operators on the subalgebras so( n)g. -
Now we can re-write Corollary 2 in the Lax form:
Corollary 3. The following equality holds true:

OL(w)
otk = [Msk’O,L(w)] = [L(’w),MSkJFNJFLNJrl], (16)
5,0
i.e "times” t* , and t’;JrNH’NH coincide.

Remark 3. Corollary 3 means that, fixing the Lax
matrix, we can write two different Lax representations
for our Hamiltonian equations.

Remark 4. Corollary 3 is important from the point of
view of applications: it gives us the possibility to choose
one more simpler M operator from the two possible
variants.
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4. Integrable Systems in the Spaces of Small
Quasigrade

The examples most interesting from the physical point
of view usually arise in the spaces My with small N.
Now we consider the case N = 0 and the algebras

P

s0(n)s, in order to explicitly obtain generalized Clebsh
and Neuman systems.

Remark 5. We will hereafter assume that a; # a;
for i # j. This requirement is necessary to guarantee
the completeness of the family of mutually commuting
integrals of motion.

Generalized
construction.

Clebsh  system explicit
Let us consider a subspace Mg. The
corresponding Lax operator L(w) € M,y has the
following form:

>

i,j=1,n

NORIC)

K U),"LU]'

L(w) =

Xij-

Commuting integrals are constructed using the
expansions in the powers of w of the functions Hy (w) =
Tr(L(w))*. We are especially interested in the quadratic
Hamiltonians. Let us, for the purpose of convenience,
introduce the following notation:

n—2
h(w) = H2(w) = Y hs(l}} ) =
s=0
Z H —ak )2.
4,j=1 k#i,j
We obtain
. (kl_llak) "
= (=1 n—2 = \1)y2
hO ( ) i 521 aiaj (lz] )
(T @)
hy = (=1)"? L 122 et
i,j=1 QiQj k#i,j
haes = (=1) 3 (3 ap — (ai +az))(1$]))?
i,j=1 k=1
hnoa = Y (1))
i,j=1
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In the space My, two Poisson structures { , } i exist
which corresponds to the cases K = 0, 1. Let us consider
the case K = 1 (case K = 0 corresponds to generalized
tops and was considered in [8]):

(3

(17)

{ll(]l), l](j)}l = alédl,(clj) — ajék]ll(ll) + a,élklﬁ) — ajéjll,(cl-).

The Lie algebraic structure, which is defined by these
brackets, strongly depends on the constants a;. Let us
consider the case of the simplest “degeneration” a,, — 0,
a; # O,/vz}lere i < n, that corresponds to the Lie
algebra so(n),, . In this case, we have the following
commutation relations:

{ll(»Jl-), l](j)}l = aiéill,(é) — ajékjlgll) + alélklﬁ) — ajéjll,(cl.)

{lz(;)a 1122}1 = aiéikl;it) - aj‘skjlz(rlz)’

1) (1
{lf) 15 =0,
where i, j, k < n. Making the replacement of variables

ll(l) l(l)

mij = 7o o = S, where b = al?ij k<n, (18)
i0; k

we obtain the standard commutation relations for the

Lie algebra e(n — 1):

{mij, mp}1 = dampy; — Sgyma + diemj — dumpi,
{mij, xr }1 = dinr — O i,
{1‘,’,11?]'}1 = 0

Let us consider the explicit form of the above
Hamiltonians in the limit a,, — 0. By direct calculations,
taking into account that, in the case a,, = 0, only some
of the summands in the definition of each function hy
survive, we obtain:

n—1 n—1 (l(l))2
ho = (=1)"722([] ax) > —=
k=1 i=1 (6113)2 "
n—1 n—1 (l (l )2
_ n—3 v _ wm
i ( 1) (kl;l1 ak)i,jzzl( a;a; 2 a? )
n—1 n—1 (1) 9
hyp-3=(=1) > (> ar — (a;i + aj))(lij )=
ij=1 k=1
n—1 1)
~2(Y ax — a))(1)?)
k=1
hno = 3 (15}))?
4,j=1
298

For the case of the brackets { , }1 and a, =
0, in order to have the above Hamiltonians in the
standard e(n — 1) coordinates, we apply the coordinate
transformation (18). As a result, we obtain:

n—1 n—1
ho = (=1)"722(I] ax) 3° =7
=1 k=1
n—1 n—1 1.9
hy = (—1)7173(1c ) ak)('zl(mfj — 2a; x7) — ho)
= i,j=
n—1 n—1
hp_s = (El a;aj(a; + aj)m;; + 2a;x7) — (kz ag)hp—2
i,J= =1
n—1
hno = (Y ajaymi; + 2a;x3).
ij=1

These are the Hamiltonians of generalized Clebsh
systems. In order to recognize this, we will consider a
small-rank example.

Small-rank example: e(3) Clebsh system. Let
n = 4. In this case, we obtain the Clebsh integrable case
of Kirchoff’s system on e(3). It was discussed in [4] and
[6].

Hamiltonians of the Clebsh integrable case hg, h1, ho,
are already written in the standard form. Indeed, making
the replacement of variables m;, = €;;am;j, T, = 4, in
order to have standard e(3) commutation relations,

{ms,m;} = ejpmy, {ms,x;} = €rar, {zi,z;} =0,

we obtain

3
ho = (alagag) E .’L’%

3 3
hi = (ara2a3) (Y mi —a; 'z7) + (X a; Hho
i=1 i=1
3. aiasa
hy = (3 1a2 3m? + a;z?).
i i

The function hg is a Casimir function. It is easy to
see that the functions hy and h; (modulo Casimir hg)
are standard integrals of the e(3) Clebsh system [6, 4].

Motion of a particle on the (n — 2)-dimensional
sphere in quadratic potential. In this paragraph,
we will obtain Hamiltonians and integrals of motion
of a particle on the n-dimensional sphere in quadratic
potential. This system is known to be integrable [2].
It is usually called a generalized Neuman system. The
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Hamiltonian of this system is given by the following
formula:

Zpl +Zcz a?,

where the coefficients ¢; are arbitrary, coordinates z; and
n—1

momenta p; are subjected to the constraints: Y z? =r
i=1

H{cl pa

2

z;p; = 0, and the Poisson brackets are canonical:

n—1
and Y
i=1

{pi,éﬂj} = 51‘;’, {xi,iﬂj} =0, {piapj} =0.

We will show below that it could be considered as a
special case of the Clebsh system and will obtain the
correspondent hyperelliptic Lax pairs.

Let us consider the restriction of the Clebsh system
on the degenerated coadjoint orbits of the group
E(n—1). More precisely, let us consider the degenerated
orbit Omin of E(n — 1) of the minimal dimension. It
is known that they coincide with 7*S"~2 [2]. It is
also known that this orbit satisfies such constraints
[9] that, after the restriction, elements m;; could be
parameterized as follows:

n—1 n—1
— — 2 _
mi; = X;pj — Tjp;, Where E zip; = 0, E T; =
i=1 i=1

Let us consider the Hamiltonians of a Clebsh system,
restricted on omi, = 7*S"2:

n—1 n—1 n—1
ho = (=1)"2(II ax) X =i = (II ax)r?,
oL
hy = (_1)n73( ak)( (mzp] m]pz) —a 11172)
k=1 i,j=1
n—1 _
_(Z ay, )h07
k=1
n—1
hn—3 = ( Z aiaj(a; + a;)(xip; —wjpz) +a2$2)
i,j=1
n—1

—( > ag)hn—2,

k=1

n—1
= (X2 aia;(zip;

ij=1

—z;pi)? + a;z?).

Taking into account that

n—1 n—1 n—1
S (s - ww)? =23 () - 2AY )’
i,j=1 i=1 j=1 i=1
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n—1
Now, taking into account the constraints . z? = r
i=1

2

z;p; = 0, we obtain

n—1
and )
i=1

n—1
E 2 _
mij =

ij=1

WZ@

This implies the Hamiltonian A; in the next form:

”11_[a;c 221"

3,j=1

hy = z3) +c.

Now it is evident that modulo a constant, the following

identity is true hy = 2r*( [ (—ax))H{.,}y, where ¢; =
k=1

—(2r%a;)™1, i.e., that we indeed obtain a generalized
Neuman’s Hamiltonian.

New Lax-type representations for the generalized
Clebsh and Neuman systems. In this subsection,
we will explicitly write a new L — M pair for the
generalized Clebsh and Neuman systems.

We begin with the case of a Clebsh system,
considering a Neuman system as its special reduction. As
follows directly from the results of the previous section,
the L operator for a Clebsh system has the following
form:

n—1 1/2 1/2 n—1 1/2
a;'"a;" y(w)
Lw)=Y" o m,,X,,+Z w1/2 i Xin.
i<j

(19)

Using Corollary 3 we obtain that the Lax equations for
the Hamiltonian H? and brackets { , } can be written
in two equivalent forms:

AL(w)
%1

= [L(w), M7 ] = [M5 o, L(w)]. (20)

Due to the fact that the operator M&O has a simpler
form, we will use it as the M operator of the Clebsh
system. Direct calculation yields the following result:

n—1 n—1
ZT; w;
M(w) = Mio =T o) 3~ 55X (21
k=1 i=1 g

The L — M pair for the Neuman system coincides
with the L — M pair for the Clebsh system restricted
onto T*S™ !, i.e., one has to put m;; = z;p; — z;p; into
the L — M pair of the Clebsh system (19).
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T. SKRYPNYK

Several remarks on the spectral curve. At
the end of the paper, we want to make several
comments on the algebraic curve, on whose Jacobian the
equations of motion of the considered systems becomes
linear.

Due to the standard formalism [10], the
correspondent curve Ry, could be defined via the
equation

Ry p(w,u) =det(L(w) —u-1,) =0, (22)

where L(w) € My. It is necessary only to show,
that the corresponding equation is indeed algebraic, i.e.,
that the function Ry n(w,u) is a polynomial in u and
w:

Proposition 5. Function Ry, is a polynomial in u
and w of the following type:

ZR

where i € 0,n, j € 0,[n/2](N +n —2).

Proof. Proposition 5 is proved by the direct
calculation. Indeed, expanding Ry »(w,u) in the power
series in the parameter u, we obtain: Ry ,(w,u) =

Ry n(w,u) = Hkuw]

n
> pru™*, where py are the coefficients of the
k=0
characteristic polynomial. On the other hand, it is well

known that pp = —1/k(Sy + Z Sk—ipi), where Sy =

i=0
TrL(w)*. Due to the fact that the matrix L(w) is skew,
we, moreover, obtain that pogi1 Sor+1 = 0, and
por = D2k(Sa,...,Sa). As follows from the definition
of L(w), TrL(w)?* is a polynomial in w of the degree
E(N 4+ n — 2), and its coefficients are expressed via
Hamiltonians HY .

Proposition 5 is proved.

The author is thankful to P.I. Holod for the helpful
discussions. The research described in this article was
made possible in part by Award No. UP1-2115 of the
U.S. Civilian Research and Development Foundation
(CRDF).
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Colloquium on the
2000; e-print:

CHUCTEMU KJIEBIIIA TA HEVIMAHA 3I CIHEIIAJILHUX
KBASBITPAIYIOBAHNX AJITEBP JII
HA KPUBUX BUIIINX PO/IIB

T.B. Cxpunnux
Peszwowme

Mu KOHCTPYIOEMO crerjanbHi so(n)-3ua4dni anreGpu JIi Ha anre-
OpaivyHux KPHUBHX BHUINUX DOAiB. BuxopumcroByioum Tx, Mu OTpH-
MY€EMO HOBY TE€ODETHUYHY JI-iHTepIpeTamniio i HOBi mpejcTaBIeHHS
Jlakca 31 CIeKTpajbHAM MapaMeTPOM [JIsi Y3arajJbHEHUX CHUCTEM
Kne6ma ta Heiimana.

CUCTEMBI KJIEBIITA 1 HEUMAHA 13 CIEIMAJIBHBIX
KBASUT'PAAYUPOBAHHBIX AJITEBP JIN
HA KPUBBIX BBICIINX POJ/JIOB

T.B. Cxpoinnoik
PeszwowMme

Msb!1 KOHCTpyHpyeM crnenuasibebe S0(n)-3HauHble anrebpu Jlu Ha
aare6panvIecKuX KPUBBIX BBICHIUX POXOB. VCHOnb3ysi uxX, MBI Ha-
XOJUAM HOBYIO TEOPETHUUECKYIO JIH-UHTEPIPETAIUIO U IPEJICTABIIE-
Hus TUNA JIaKca CO CIeKTpaJbHBIM MapaMeTpoM i 0O0OIIEHHBIX
cucrem Knebma u Heiimana.
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