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In the framework of the theory of quantum groups and their
homogeneous spaces we consider two geometric realizations for
the ladder representation of the quantum group SU(2, 2) and
their intertwining linear transformation which is a g¢-analogue
of the Penrose transform. Our results hint that a great deal of
constructions specific for the theory of quasi-coherent G-sheaves
admit non-commutative analogues.

1. Introduction

In the framework of the theory of quantum groups and
their homogeneous spaces, we consider two geometric
realizations for the quantum ladder representation,
together with an intertwining linear transformation —
the quantum Penrose transform.

In section 2, we supply a preliminary material on
the classical Penrose transform and prove (1). The g¢-
analogue of (1) is to be used in Section 3 to produce a
quantum Penrose transform.

Our results hint that a great deal of constructions
specific of the theory of quasi-coherent sheaves admit
non-commutative analogues. This research is motivated
by a possibility to use the results of non-commutative
algebraic geometry for producing and studying Harish-
Chandra modules over quantum universal enveloping
algebras.

There is a plenty of literature on the Penrose
transform, quantum groups, and non-commutative
algebraic geometry. We restrict ourselves to mentioning
monographs [2, 6, 3], papers [1, 10], and preprint [9].

Note that noncommutative analogues for the Penrose
transform and covariant differential operators are also
considered in preprints [8, 12] and in papers [5, 4, 7],
respectively, in a completely different context.

2. The Classical Case

To recall the definition of the Penrose transform, we
restrict ourselves to a simplest substantial example. In
this special case, the Penrose transform intertwines the
cohomology of the sheaf O(—2) on

U' = {(uy :ug :uz : ug) € CP?lug #0 or uy # 0}

and sections of the sheaf O(—1) on some open affine
submanifold of the Grassmann manifold Gry(C?*) —
CP°. Instead of the Grassmann manifold, we prefer
to consider the Stifel manifold of ordered linear
independent pairs of vectors in C*. In this context, the
G Ly-covariant sections on the Stifel manifold work as
sections of the sheaf O(—1) on Gra(C*).

To each matrix t = (tij)izl,Z;j:1,2,3,4 € 1\/Iat274,
associate the pairs of vectors in C*:

(ti1,t12, t13, t1a), (ta1,t22,ta3, taa).

Consider U" = {t € 1\4&1]234‘ t13tog — t14to3 7é 0} EVQI‘y
point u = (uy : ug : ug : ug) € U’ determines a one-
dimensional subspace L, C C*, and every point t € U”
determines a two-dimensional subspace L. generated by
the vectors of the corresponding pair. Let U = {(u,t) €
U x U"|Ly, C L¢}. We thus get a ’double fibration’
U’ +— U — U”, which leads to the Penrose transform. It

n T
should be noted that every line Ly is of the form

L =C(¢,¢2) (i; hiz 3 t14> ) (¢1,¢) e C2

too  tog T2

Hence, the above double fibration is isomorphic to the
double fibration

U/ - (CIP’l % U// N UN,

pro

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.
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with
. _ tin tiz tiz tig
T <(Cl : C2>v <t21 togs  tog t24>) ~

= (Gt + Catar) = (Citiz + Cataz) = (Citas+

+(atas) 1 (Citia + Catoa)).

We thus get a coordinate description for the double
fibration in question; this coordinate description is going
to be implicit in all subsequent computations. Let us look
at the cohomologies.

Consider an open affine cover U’ =

U1 = {(u
U2 = {(U

U, UUs,,

1:’U,QIU3I’U,4)€U/|’U,37£0},
1:ug tug:uy) € Ulug # 0},

and compute the Cech cohomology H(U’,0(-2)).
Let C[ul,uQ,ugﬂ,ufl] be the Laurent polynomials
in indeterminates w3, wu4, with coefficients from
Clug, uz]. In a similar way,introduce C[ul,ug,ufl,m],
C[ul,ug,ug,ufl}; of course, these appear to be Usly-
modules.

It follows from the definition of the Cech complex

that there exists a natural isomorphism of Usly-modules:

HYU',0(-2)) =

+1

={fe (C[ul,uz,ugl,uzL ]/(C[ul,uQ,ufl,ud +

+(C[u1,u2,U3,u4 ])!degf— —2}.
Hence, the Laurent polynomials

Ji,,J2
Uy Uy

Jjs, Ja’
U3 Wy

J3>21 & ju>1 & js+ja=j1+j2+2,

form a basis of the vector space H'(U’,O(-2)).
Consider the trivial bundle over U” with fiber
H'(CP', O(—2)). It is known that H'(CP', O(-2)) ~ C,
and the isomorphism is available via choosing an open
affine cover CP' = {((1: ¢2)| C1 # 0}U{(¢r = G2)| G # 0.

Specifically, > cjkg{g‘§ — c_1,—1. In a different
jk=—2

notation, f +— CT((1(2f), with CT : Ec7kC1C2 — Coo

(the constant term of a series). Now Pf is defined
as a higher direct image of the cohomology class n* f:
Pf = 7ln*f. The linear map 7. is called the integration
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along the fibers of 7. We restrict ourselves to computing
this ’integral’ inside the infinitesimal neighborhood of

to = (0 00 1) by using formal series in ¢17, t19,

0 010
t13, L4, t21, t% , ta4 with coefficients from C[¢!, (]
Of course, n* : f(u) — f(¢t). So, in the coordinate
description
P fuw) = CTe (¢ f(Ch)),
f € uztuy Cluy,ug,uz *,uy'], (1)

with CT¢ being the constant term in the indeterminate
¢. ExaMPLE. Compute P(1/(uguy)). One has:

1 1l &y i (Gt '
Citis + Cotos  Cotos ;( D <C2t23> 7

0

1 _ Loy (Gt
Citia + Cotos  Citia ;( 2 <Clt14)

0

Hence,
1
() -
uzuUq

— CT,

S 1)+ %)Z <C2t24>j
Z 7 <C2t23 Citia

%J=

t23t14

o [ ti3taa 1 1 B
Z 1 _ tiztaa

T tast 123t T tast
23l14 ;=7 \ 123014 23114 toatis

1
t13tos — tiatos
REMARK. It is known that the Penrose transform is
an isomorphism between the two realizations for the

'ladder’ representation of sly: the representation in
HY(U',0(—2)) and the representation in

{1#(2%, 23,23, 23) (t13tos — tiates) ' €

€ H(U",0(-1))| 0y = 0},
aer 0% 1
where [ 9:10:2 — 9:10:2" and

t1otog — t13t22

1 tiites —t13lor 4
27 = 25 =

t13tos — t1atas’ t13toq — t14t23
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22— t11toa —t1ator o tiotas — tialon

U tistog — tiatas’ P tiztos — tiates

The vectors 1/(uguy) and 1/(t13ta4 — t14tes) are lowest
weight vectors for the above representations of sly. Of
course, zi, za, 23, 22 can be considered as the standard
coordinates on the big cell ti3toq — t14taz # 0 of the
Grassmanian Gry(C?).

3. The Quantum Case

In the previous section, we have produced formula
(1) which can be treated as a definition of the
Penrose transform in the classical case. Now our
intention is to produce a g¢-analogue of (1). The
principal difference from the constructions of Section
2 is in replacement of the functors n*, 7! of the
sheaf theory with the corresponding morphisms of
Uysly-modules. Here, Ugsly is a quantum universal
enveloping algebra. It is a Hopf algebra over the
ground field C(g) and is determined by the generators
{E;, F;, KF'}i—1 2.3 and the well-known Drinfeld-Jimbo
relations [6].)

The quantum projective space (CIP;‘;uant is defined in
terms of a Z,-graded algebra Clui,us,us,us]; whose
generators uy, ug, us, ug are subject to the commutation
relations
UjU; = qUjU;, 1< 7.

Just as in the classical case, degur = 1, k£ = 1,2, 3,4.
The localization (C[ul,uQ,usil, ujfl]q of Cluy, ug, uz, ualq
with respect to the multiplicative system (uzug)" is
equipped in a standard way with a structure of U,sls-
module algebra. The subalgebras C[?Ll,ng,u§1,U4]q,
C[ul,uQ,u?),ufl}q constitute Ug,sly-submodules of the

Ugsly-module (C[ul,uz,ugcl,ujfl]q. Thus, we come
to

V' = C[ul,ug,u§17uf]q/ ((C[ul,u%u?l,m]q +

+ C[U17U27U37Uff1]q) (2)

as a g-analogue of the Usly-module H*(U’, O(-2)).
We have produced a g¢-analogue for the first
geometric realization of the ’ladder representation’.
Turn to a construction of its second geometric
realization.
The algebra C[Mats 4], of polynomials on the
quantum matrix space is determined by its generators
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{tij}i=1,2;j=12,34 and the well-known commutation
relations

tiktik = qtjkti,  tritk; = qlrjlri, i< g,
tijtir = tritij, 1<k, j>1,
tijter — trti; = (@ — ¢ Dtat i i<k, j<l

The element ¢t = t13tay — qt14t23 quasi-commutes
with all the generators t;;, ¢« = 1,2, j = 1,2,3,4.
Let C[Matg4]q: be a localization of C[Mats 4], with
respect to the multiplicative system ¢V and Ugsly the
quantum universal enveloping algebra (determined by
the generators E, F, K*!' and the Drinfeld-Jimbo
relations).

C[Matg 4]+ is equipped in a standard way with a
structure of Uysly ® U,sly-module algebra. In particular,
C[Matg 4)q,¢ is a Ugsly-module algebra.

Introduce the notation:

21 =t Y (t11taz — qtistaer),
2y =t~ (tiatas — qtagtan),
22 =t (t11tos — qtiator),
25 =t~ (tiotas — qtiates).

It is well known and easily deducible that
kk

1,0 — .50 _ ; :
2p2, = Q2L A = Q22 i< g,
z;zlkzzlkz;, 1<k, 7>1,
zizp — 22 = (0 —q )z i<k, j<lL

It follows that the subalgebra generated by =2{,
23, 22, 23 is ’canonically’ isomorphic to the

algebra C[Mats 2], of ’polynomials on the quantum

matrix space’. It is easy to demonstrate that
C[Matg o]st ™! is a Uysly-submodule of the U,sly-module
(C[MatgA]qJ.

The simple submodule of the Ugsls-module
CMato,t™! we are interested in is distinguished
via a g-analogue [, of the wave operator
O
0 0 0 0 0

1T 9002 192102
Specifically, V" = {¢t=!| 0,0 = 0, ¢ € C[Matao],}. It

is worth to note that the operators — are defined in

0z

J
terms of a Uysly-invariant first order differential calculus
in C[l\/latzg}qf

af =) of dzl.
1,7

0z

i
J
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In turn, this first order differential calculus is defined by
the following well-known ’commutation’ relations:

17,1 _ =271
z1dz; = q 7dz - 2
2tdzd = q 2l - 2t
21d2? = q'd2? - 2]

17,2 _ 7.2, 1
z1dzs = dz5 - 21

zydzi = q M2 -2 + (77 = D)d2g - 2
zadzd = q7%d2) - 2

23d2? =dz? - 23 + (g7 — q)d23 - 2}
23dz3 = qtd23 - 22

22dzt = q N2 - 22+ (g2 — 1)d2? - 2}
2idzy =dzy - 20 + (7' — q)dz3 - 2

272 _ —27.2 .2
27dzy = q 7dzy - 23
22d23 = q7td22 - 23
z3dz) =dzi - 25 + (7 — q)dz - 2+

+(g ™t —q)dzt -2 + (g !

' Q)deg T2

25dzl = q7td2d - 23+ (2 — 1)dz3 - 22
22d2? = q7Nd2? - 22+ (¢ — 1)d23 - 22

23dz3 = q %dz3 - 23

We thus get two Uysly-modules V', V”; our intention
is to find an explicit form of the linear map which
provides an isomorphism P : V' — V.

We follow the ideas of classical constructions
described in Section 2 in considering the quantum
projective space (C]P’quant More precisely, let us consider
a Z-graded algebra C[(1, (2]q:

C1¢2 = q(2€1, deg(C1) = deg(¢2) = 1,

together with its localization C[¢E!, ¢F'], with respect

to the multiplicative system (¢1¢2)N. The algebra
C] lil, Qil]q is equipped in a standard way with
a structure of Ugslp-module algebra. The following

homomorphism of algebras will work as the operator
f(u) — f(CH):

77* : C[“h Uz, U3, u4](1 - C[Ch CQ](I ® C[Matldqv
7]*“]'_’(1®t13+42®t2p j:1a27374'

To follow the constructions of Section 2, we have to
invert the elements Cl 24 tlg + 42 (024] t23, Cl ® t14 -+ CQ ® t24
in a suitable localization of C[¢iE!, (1], ® C[Mata 4],
It is easy to verify that
(t1atz3)? - C[Matz,4]qs C C[Mato ],
(C[MatgA]q’t . (t14t23)2 C

< (t1ato3),
(t14t23) . (C[Matg’;dq?t.
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Thus, we have a well-defined localization of
C[Matg 4]q,: with respect to the multiplicative system
(t1at23)N. In an appropriate completion of this algebra,
one has the following relations:

(G @tz + (o @tas) ' =

= ((2 @ ta3) ™" Z (GG ) (t13t2_31)i )
=0
(L@t + G Rty) =
= Z(—l)j (Cfl@)j ® (tf41t24)j (G @tg) !
j=0

We define the quantum Penrose transform by

Pof = (CT®id) (¢ @ 1) (0" f),

where, just as above, CT : Zcijg“’{(g — c_1,-1, and f
ij

belongs to the linear span of the elements

uf' e uz Pug T Ga > 1 ja > 1 gy + g2 — ds — ja = —2.

3)

Now (3.) determines a Uysly-module structure in this
linear span since monomials (3) form a basis in the vector
space V.

APPENDIX

We sketch here the proof of the fact that P, is an isomorphism of
Ugsls-modules V/ =V,

It follows from the definition that P, is a morphism of Ugsly-
modules. In view of the simplicity of V’ and V", it suffices to
prove that P, takes the (lowest weight) vector uglull € V' to
the (lowest weight) vector —(t13t2s4 — qt1ates)™'. We start with
an auxiliary statement:

(1= (izts) (rdtar)) ™ = 3 0 (i) (sen)

k=0

(4)

It follows from the commutation relation
(tl_41t24> <t2_31t13> =q7 (t2_31t13) (t1_41t24) +1-q? (5)

and relation (6.5) of [11].
An application of (4) allows one to prove that

Py (u§1u21> = —(tistas — qtiatas) "
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In fact,

Py (ug'ui’) = CT @ id(gl ® tyy x

gt

M8

(DG Y g (t2_31t13)i> X

0

X
i

-GG Y @ (t;41t24)j Gt ®t141>,
On the other hand,
k k
GHagh) (') al=atG g =G
Hence,

i k k
1 -1 1,1 _ 1 1 -1
Pq (“3 Uy >:q s (Zq 2k (t14 t24> (t23 t13> >t14 =
k=0

= —(t13t24 — qt14t23)71,

(6)

=q! (t14 (1 - t;31t13t1741t24) t23)
which completes the proof.
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IIPO ¢-AHAJIOT IIEPETBOPEHH{ ITEHPOVY3A

/. Ikaspos, C. Cuneavwuros, A. Cmoain, JI. Baxcman
Peszmowme

B pamkax Teopil KBAHTOBHUX IPYII Ta X OJHOPITHUX IPOCTOPIB PO3-
rJIsTHYTO ABi peastizaiii ApabuHYacTOro mpejcTaBIeHHsT KBAHTOBOT
rpynu SU(2, 2) Ta cnnitarounit ix jiHilinuii omepaTop, mo € g¢-
anasiorom mepersopenss [lexpoysa. OTpumani pe3ynabraTu BKasy-
OTh HA Te, IO 6araTo KOHCTPYKIi# Teopili KBa3ikorepeHTHUX G-
[Iy9IKiB MAIOTh HEKOMYTATHBHI AHAJIOTH.

O ¢-AHAJIOT'E ITPEOBPASOBAHUA ITEHPOV3A

/. HIkaspos, C. Cuneavwuros, A. Cmoaun, JI. Baxcman
Peszmowme

B pamkax Teopmm KBAaHTOBBIX TPYHIII M WX OJHOPOZHBIX IIPOC-
TPAHCTB PACCMATPUBAIOTCA [B€ peaau3aluil JICTHUIHOTO TpeJ-
CTaBJIeHNs KBAHTOBOM rpynmsl SU(2, 2) u crneTaomui ux JuHeii-
HBI OIIEPATOP, ABJISIOMIANCS ¢-aHAJI0roM npeobpazosanust [lenpo-
y3a. Hamu pesymapTaTe! yKa3pIBaOT Ha TO, 9YTO MHOTHE KOHCTPYK-
qUu TEOPUU KBA3UKOIC€PEHTHBIX G—Hy‘{KOB UMEIT HEKOMMY TATUB-
HbIe aHAJIOTH.
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