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By perturbation theory, the asymptotic behaviours of the
adiabatic energy terms of the relativistic two-Coulomb-center
problem are constructed in the limiting cases of small and
large inter-nuclear distances R. On the basis of the boundary-
layer method of Fock—Leontovich, the relativistic version of the
quasiclassical approximation is elaborated for the Dirac equation
with an arbitrary axially symmetric potential, unpermitting the
complete separation of variables. The quasiclassical asymptotics
of the two-Coulomb-center wave function of a Dirac electron
is found in a classically forbidden region. The first two terms
of the asymptotic (at large inter-nuclear distance) expansion of
the exchange interaction potential of an ion with an atom are
calculated.

Introduction

At the present time, a severe asymmetry exists in
the development of the theories of non-relativistic
and relativistic quantum-mechanical problems of two
Coulomb centers (the so-called ZjeZ, problem).
Numerous effective asymptotic and numerical methods
of solving the two-Coulomb-center problem for the
Schrodinger equation (see, for instance, [1 and references
therein]) can be opposed only by seldom examples
of the consideration of the same problem for the
Dirac equation within various approximations [2—
5] (the Galerkin method, diagonalization, variational
method, perturbation theory, Furry—Sommerfeld—
Maue approximation). Such a situation is a surprising
example of passivity of the theory under deficiency
of experimental data for heavy and superheavy quasi-
molecular systems due to the difficulties in construction
of sources of multiply charged ions and formation of
beams of rather slow particles.

Besides, with the recent creation of powerful
accelerators of highly charged ions in many laboratories
[6,7] the need of the consistent Dirac theory of the
quantum mechanical problem Z;eZs is more and more

urgent in different fields of physics. Previously, this
problem was applied in the theory of supercritical atoms
for description of the effects of spontaneous and enforced
creation of positrons in a supercritical field of a quasi-
atom formed at slow collisions of heavy ions with a total
atomic number Z; + Zy > 173. This problem was first
considered by Gershtein and Zel’dovich [8] and in the
series of papers of Popov [3,9], though this retrospective

list can be incomplete. Note that the intense
experimental investigations of the processes of positron
generation at slow collisions of heavy ions being carried
out in the recent years can essentially complement our
knowledge about the vacuum shell of a supercritical
atom and verify the status of quantum electrodynamics
in the range of strong external fields [3—9], provided that
the theory of these processes is equivalently developed.

According to the indicated applications of the ZjeZs
problem, the main interest was attracted by the lower
potential curves of the ZjeZs system with the total
charge of both nuclei Z = Z; + Z5 exceeding the critical
value Z., = 173 at the inter-center distances R of the
order of the critical value R, [9] (the model of united

atom). Rather recently [10], this problem was used as a
model approximation in the investigations of elementary
processes of collisions (excitation, charge exchange,
ionization) of multiply charged ions. Thus, the

relativistic problem was [11] considered in an asymptotic
limit when the internuclear distance is larger than the
Compton wavelength of an electron. The prospects of
application of the relativistic model Z;eZ; in the theory

of collisions become specially significant in connection
with the recent communications [6] appeared from a
group of Dr. Gould (Berkeley, USA), who had obtained
and detected H- and He-like uranium ions (U%'* and

U%+) with energies below 100 eV per unit charge.
At such values of the electric charge, relativistic and
radiative effects are not small corrections and essentially

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.
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determine the orders of spectral characteristics. Here,
the approach, based on the Breit—Pauli Hamiltonian,
apparently becomes inapplicable, and the necessity of
employing the modern methods of relativistic quantum
mechanics and quantum electrodynamics arises. This
problem can be solved only by comparison of the results
of energy structure calculation with the experimental
data. Other application of the relativistic problem in the
theory of collisions is more traditional and is reduced
to using the model functions of a continuous spectrum
for the analysis of scattering of relativistic electrons by
heavy diatomic molecules [10]. The further references
about some other applications of the relativistic Z;eZ,
model in atomic and mesoatomic physics can be found
in [10], and we should only mark that systematic
studies of relativistic effects in atoms and molecules,
which often appear rather essential for the explanation
of chemical properties of many chemical, especially
heavy [12], elements have been started recently. The
difficulty in considering the problem consists in the
fact that the Dirac equation with the potential of
two Coulomb centers does not permit a complete
separation of variables in any orthogonal system of
coordinates and, thus, one has to deal with first-order
partial differential equations. This highly complicates
the whole specific problem of finding the electron
wave function and potential curves. Unfortunately, the
numerical solving of this system of differential equations
is a rather complicated and cumbersome problem
[4,5,13] requiring rather complicated calculations for
each specific system ZjeZ;. This causes the necessity
of creating and investigating approximate methods of
solving this problem, which are based on clear physical
ideas and a well-elaborated mathematical device and
have a clear area of application. As a suitable method
for calculating the wave functions and other quantities
in Z1eZ, problem, we propose to employ the relativistic
version of the WKB approximation. This approach
together with the boundary layer method [14,15], found
by M. A. Leontovich and V. A. Fock, allow us
to construct the quasiclassical solutions of the Dirac
equation with an arbitrary axially symmetric potential,
unpermitting the complete separation of variables and
to analyze the discrete spectrum of the given problem at
large internuclear distances.

The paper is organized as follows. In the first two
sections, the method of constructing the asymptotic
expansions of the energy of the system Z;eZ, at small
and large internuclear distances R is proposed. For this
we use the scheme of perturbation theory which does
not require the separation of variables. In Sec. 3, we
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analytically solve the Dirac equation with an axially
symmetric potential by the WKB method in the below-
barrier range in the vicinity of the potential symmetry
axis. In Sec. 4, we employ the elaborated approach to
the two-Coulomb-center problem, when the internuclear
distances R are large, and obtain the two-Coulomb-
center wave function. Using this function, we calculate
the first two terms of the asymptotic behaviour of the
exchange interaction potential of an ion with an atom
for the general non-resonance case. In the last section of
the paper, we discuss and compare the obtained results
with the data of similar non-relativistic approximations.

1. Asymptotic Behaviour of Potential Curves
of the Relativistic Z;eZ> Problem at R — 0

When the total charge of Coulomb centers Z = Z; + Z»
is positive and the intercenter distance R tends to zero,
it is possible to consider the relativistic problem Z;eZs
within perturbation theory, which does not require the
separation of variables. The Dirac Hamiltonian of the
problem ZjeZ, is of the form (m. =e=Hh = 1):
I:I:cd':'—kczﬂ—é—é, (1)
™ T2

where r; is the distance between the electron and the
corresponding nucleus (i = 1,2); § = —iV, is the
momentum operator, and c¢ is the velocity of light. In
the standard representation [16],

(30 (ih):

Here, & are the Pauli matrices, and 0 and I are,
respectively, 2 X 2 zero and identity matrices. Let
us represent the complete Hamiltonian of the two-
Coulomb-center problem H by the Hamiltonian of zero
approximation HUA and perturbation W

. A R 5 . Z
H = HA+W, HYA = cap+ 326 - —
0

7 = 74+ Zs. (3)

We consider the spherical system of coordinates rg,
6o, o, whose origin is at the electric center (0,0, zo),
and the angle 6, is measured from the axis Oz, directed
from the center Z; to center Zs. Now we construct
the unperturbed wave function of an united atom. The
eigenvalues of the operator HU4 are characterized by
spherical quantum numbers n, j, I, m, where n is the
principal quantum number, 7 and [ are the total electron
and orbital angular moments, respectively, m is the
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projection of j onto the internuclear axis. For the given j
and [, there are two types of the solutions, distinguishing
by a parity P = (—1)!, instead of which we shall use the
orbital moment [ = j &+ 1/2. At continuous approaching
of nuclei (R — 0), the solutions of the Dirac equation
with the potential of two Coulomb centers should tend
to the respective solutions of the spherically symmetric
Coulomb problem. Therefore, in the Z;eZ, problem it
is also necessary to distinguish two types of potential
curves and two types of solutions of the Dirac equation,
which at the continuous approaching of the nuclei Z;
and Z, transit into the states with I = j + 1/2 and
I = j—1/2 for the united atom with the nuclear charge
Z = Z1 + Z>. The explicit form of the eigenfunctions of
the operator HU4 for both types can be found in [16].
Expanding W in Legendre polynomials and calculating

the elements of the matrix Hngll;nml H to within O (R?),
we see that it is diagonal with respect to each group of
mutually degenerate states | = j +1/2 and m. The final

formula for the energy of the Z;eZ5 system has the form:

2.7, [3m? —j(j + 1
Enjlm(Zl,ZQ,R) :502 + 142 [ m J(] )]

2N3 iG+1)
[3eR(eR —1) — 4% + 1] - (ZR)? 3
DT +0 (R%), (4)
n' :n—]—%, N = (-1,
k:j+%, l=j+1/2, (5)
N = AW, 7= (P,

—1/2

(6)

7 \?
s:l1+<0,40 )
n' + -y

Here ap = 1/c & 1/137 is the fine structure constant.

2. Asymptotic Behaviour of Potential Curves
of the Relativistic Z;eZ, Problem at
R — o0

Now we shall determine the energy E(R) of an electron
in the asymptotic region, when the distance R between
the Coulomb centers is large. This distance should be
so large that the quantum penetrability of the potential
barrier separating the atomic particles is much smaller
than unity. When atoms 1 and 2 are different, the
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eigenvalues (potential curves) of the two-Coulomb-
center problem, dependent on the internuclear distance
R as a parameter, are divided into two classes in the
asymptotic limit R — oo: Er— and Ej;j— potential
curves that, for R — oo, transform into the energy
levels of isolated atoms eZ; and eZs, respectively. The
criterion of the applicability of the below expansion is the
requirement that the wave function of the ¥ —state, for
instance, of atom 1, should not be strongly perturbed by
the other particle. The distortion of the dependence of
this function on the coordinates should be small. This
is related to the energy shift of the state induced by
the interaction with perturbing particle 2. The external
(Coulomb) field of the latter is considered to be weak
compared to the typical intraatomic fields in order the
perturbation theory to be applied. Having placed the
origin of the spherical coordinate system ri, 61, ¢ at
the position of the hydrogen-like ion eZ; with nuclear
charge Z; and run the polar axis along the R axis,
we represent the complete Hamiltonian of the two-
Coulomb-center problem (1) by the Hamiltonian of the
zero-approximation H54 and perturbation ‘7,

= 5447 (7)

As H S4 the Hamiltonian of the relativistic hydrogen-
like atom with charge Z;,

. A Z
HS4 = cdp+ B — T—f, 8)

is taken. The eigenstates of the operator HSA are
characterized by the set of quantum numbers n, ji,
l1, my. Similarly to the previous case, we expand the

perturbation operator V = —Z,/|f, — K| in Legendre
i H nijil'ma’
polynomials and calculate the matrix Vo, s

to within the first undisappearing non-diagonal term,
inclusively.

Diagonalizing the complete matrix with respect to
each group of mutually degenerate states (I = j+1/2 and
m), in the first-order of perturbation theory, we obtain
an analytic expression in the form of the asymptotic (on
R™1) expansion:

Z2 3 (nl+’)/1)m1 Z2
2 3 [y el
ROV TN G 2R

+0 (R7?), 9)

E[ (R) = 5162 —

where the quantities nj, Ry, ki, Iy, Ny, 71, €1 are
obtained from (6) by entering index 1, “+” correspond to
the state with Iy = j1£1/2. The last term in (9) coincides
with the Stark shift of a level in the weak electric field
with the intensity —Z2/R? [18]. The obtained formulae
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can be applied, in particular, for constructing the one-
electron relativistic correlation diagrams of heavy quasi-
molecules in the region between the limits of united
and separated atoms. The asymptotic expansion of
the potential curve Ej; is obtained from E; by the
substitutions e; — €2, Z1,2 — Za,1, N1, N1, 51, M1 —
N, N?:j?; ma.

3. Quasi-classical Approximation for the
Dirac Equation with an Axially Symmetric
Potential

For the solution of a quantum-mechanical problem, it
is often enough to find a wave function not in the
whole configurational space, but only in the vicinity of
some manifold M of smaller dimensionality, where the
wave function is localized. The states described by such
wave functions are called “localized”. The example of
such states is the problem of exchange interaction of
atomic particles at large internuclear distances resulting
in splitting the potential curves at the point of quasi-
crossing. Exchange splitting is known [17] to be mainly
determined by the electron distribution region lying in
the vicinity of the internuclear axis B (M is a straight
line). Another example of localized state is the process
of tunneling ionization of a hydrogen atom in a rather
weak constant electric field when the probability flux is
localized in the below-barrier range in the vicinity of the
symmetry axis (M is a straight line, t00).

In such cases it is natural to expand the potential
into the powers of the coordinate perpendicular to M.
This allows us to carry out the approximate separation
of variables, to find approximate analytic solutions of the
obtained system of matrix partial differential equations
in the vicinity of the manifold M and to consider the
wide range of problems of the theory of slow atomic
collisions.

Consider an axially symmetric problem, when two
classically allowed regions are separated by a potential
barrier. Then the direction of the most probable
tunneling way is the potential symmetry axis z, the axis
p is perpendicular to z, and ¢ is a azimuth angle.

For the bispinor ¥ = ( 767 >, the stationary Dirac

equation is of the form

cGpt = (E-V +c*)n, cdpn = (E -V — ) £,(10)
where V' = V(z,p) is the effective potential energy of
the interaction of the electron with the external field

not allowing the complete separation of variables in the
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Dirac equation. By inserting the first equation of (10)
into second one and using the substitution

E=WHY2e, Wr=E-V <+, (11)
we arrive at the matrix equation
AdD + k2P =0, (12)
1 AV

2 —_— p— p—
k h202 [(E V) ] 2W+

3 (Vv i e e

Z <W> + WUI:VV’ V] (13)
Since the potential V is axially symmetric, the

Hamiltonian commutes with the projection operator
of the total angular momentum of the electron onto
the potential symmetry axis Oz, and Eq. (12) permits
the separation of the variable ¢. For this purpose, we
represent a solution of (12) in the form

Fi(z,p)expli(m —1/2

o [ F1&p) Xp[f(m /2)¢] ’ (14)
Fy(z,p)expli (m +1/2) ¢

where Fj» are new unknown functions, m is the

projection of the total angular momentum of the electron
onto the potential symmetry axis z. By substituting (14)
n (12), we obtain the matrix differential equation

(A +

a0

(¢° +)F,

1/2
¢=-|=E-v]", (15)
5o L (o _ovoy(o -

Op 8z 0z dp 1 0 )’

— Am—1/2 bm+1/2 16
7 <bm—1/2 a_m—1/2 )’ (16)

v) 2

B ,B 1 |pdv AV 3( V)

an(z.0) = W | pay T2 T W |
oV

ba(es) = — i (a7)

Substituting a solution of this equation in the form
of the WKB expansion
hts),

F = pexp( (18)

o0
= np™
n=0
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and equating the coefficients of each power of 7 to zero,
we arrive at the system of the first-order differential
equations for the unknown function S and spinor
component (p(”):

(V9)2—¢* =0, (19)
2V SV @ + ASH© +5Sp® =0, ... (20)
Qﬁgﬁw(nﬂ) + ASgo(”“) + 5S(p(n+1)+

+Ap™ + 9™ — ™ =0, (21)

where n = 0,1,2,.... Unfortunately, Eq. (19)—(21),
similarly to the initial equation (12), do not permit
the exact separation of variables. In order to solve this
problem, we use the idea of the boundary-layer method.
We seek the solutions of (19)-(21) in the below-barrier
range, where, contrary to the classically allowed range,
the wave function is often localized in the vicinity of
the most probable way of tunneling, what essentially
simplifies the whole problem. So, it is natural to expand
all the quantities in (19)—(21), including the solutions in
the vicinity of the axis Oz.
Consider Eq. (19) and assume that

P(z,0) = 6 (2) + > Qu(2)p™,  ¢3(2) = ¢*(2,0),
k=1

1 0%%¢(2,0)

@ = k) op*

(22)
According to the above speculations, the solution of (19)
is also represented as the expansion in powers of the
coordinate p:

S(5.0) =3 Sul2)?". (23)

After inserting (23) into (19) and equating the
coefficients of each power of p to zero, we obtain
the recurrent system of ordinary first-order differential
equations

(S0')* — g5 =0, (24)
250'S1" +457 — Q. =0, (25)
250’521 + 165155 + (511)2 — Q> =0,... (26)

from which values S, (n = 0,1,2,...) are successively
determined. Here, prime means the derivative with
respect to z. Note that if, in expansion (19), the

284

coefficients of negative and odd powers of p are taken
into account, they will be equal to zero after substitution
of (23) into (19). The similar situation will repeat later
for the functions (™). All the equations of the obtained
system, except for the second one, are easy integrated.
Equation (25) is the non-linear Riccati differential
equation and, as in the non-relativistic case [19], is not
solvable analytically in the general case. However, it is
approximately solved, when a small parameter exists
in the considered problem (for example, in the Z;eZs
problem considered in the next section, such a parameter
will be R™1). The solutions of Egs. (20), (21) are sought
in the form

plm=1/2| ,;_:0 90%? (2) p*

oo (27)
p\m+1/2| kzo SOéZ) (2) p*

o™ (z,p) =

By substituting (27) into the corresponding equations
and equating the coefficients of each power of p
in the both components to zero, we obtain the
system of ordinary first-order differential equations,
whose solutions are expressed by integrals. The lower
component 7 of ¥ is obtained from the upper one £ by
operation W+ — W~

4. Quasi-classical Asymptotics of
Two-Coulomb-Center Wave Function and
Exchange Splitting of Adiabatic Potential
Curves

Find the asymptotics (at z ~ R > 1) of the wave
function of a Dirac electron placed in a field of two
fixed nuclei with charges Z; and Z,, separated by the
large distance R. We search for a solution of the Dirac
equation with the potential
vo_A__2%

=7 (28)
"o |R-n

under the boundary condition Wj Z}% Wy, which
z

means that, when the electron approaches the atom
71, the two-Coulomb-center function ¥; tends to the
unperturbed wave function ¥y of the eZ; atom. Using
the obtained expansions (9) and the general method
elaborated in the previous section to the Dirac equation
with potential (28), we obtain the following expressions
for the sought functions:

7} Z3z

e1Z1
2032 +

+ Inz—

So = —Arz —
0 ! 23R(R—2) M
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51Z2 Z1 — Z2 z
- 1 In{1—-—=
)\1 ( + ElA%R > n( R)’

qo €12 z
—_B =
51 22[ * 222 (R—z)Q}’

jmi—1/2 )
P\/a
Kf( \/_°> [1+Lli-(§) + U ()

1 g
p==

o lma1+1/2] 2

K¥ (p\/q_()) [1 +Ly- (3) + Uf(z)]
g z
+
+ _&Z(QR—Z) Nl(Nlﬂ:l)

U1,2(Z) - Woj: (R _ 2)2 2/\12 (33)

where =+ correspond to the bispinor ¢ and 7, respectively.
The constants KfQ, LfQ, an are determined from the
boundary condition ¥y Z’)% W, but the final expressions

for them are very cumbersome and are not given here.
The wave function ¥y, corresponding to the potential
curve Err-term is similarly obtained.

In a collision of slow bare nuclei of different elements
with hydrogen-like atoms, the transition of an electron
from one nucleus to the other occurs at large distances
between the colliding particles. The value of energy
splitting between terms of the system, in the range
of their pseudocrossing, determines the non-adiabatic
transition probability.

For calculating the exchange splitting of potential
curves of the ZyeZ; system, we use the representation
for this quantity as the integral over the surface S,
conditionally separating the domains where the electron
is in - and W¥ys-states [11]:

AE = E; — Eyp = 2ic / dS(},a%;). (34)
s

Note that the integral representation (34) is valid
only in the vicinity of the point R, of pseudocrossing of
the Er- and Ejj-terms:

R, =

| Z—Zi+ \/(Z2 — 1)’ —A(B) — By) (2261 — Z1&)
B 2(By — E»)

(35)
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A1
Sy = — 30
2 8237 ( )
E
€11 = C%I Mr=cy/l—ei;, (31)
: (32)

Having substituted ¥- i ¥rr-functions into (34) in
the explicit form and calculated the surface integral by
the stationary phase method, we arrive at the following
expression for the first two terms of the asymptotic
expansion of AE(R) at large R:

2A; A,

AB = (Gl 17200 + dggir 172 DB
cop{ MBI [ R
J— [N+ 83 = (| +1/2)" -
A+ Ao

B |m}|zfi/2} ’ (87)
I = |m| -|2- 1/2 (&)\?z n 52}\§1> n 612Z)‘2151 + 622Z)\12f2 _
Dy = \/(J} +lmD)! (s + )t

(J1 = m)! (G2 = [m])!
a= 61}\? + 62)51, m=m; = ms. (39)

We stress, however, that the analytic expressions derived
for the asymptotic expansion of various splittings and
shifts of the potential curves can be used sometimes
in the region of internuclear distances that are smaller
than those given by the formal criteria of applicability
of the asymptotic expansions. Qualitatively, this can be
explained by the fact that the asymptotic solutions of
the two-Coulomb-center problem (even the first term
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of the wave function expansion in powers of R~!,
up to sufficiently small R) retain the basic analytic
properties of the exact solution [1] rather well, thus,
reproducing the results of variational calculations [20].
These properties are also conserved for other quantities
computed with these functions.

Conclusions

Here we briefly summarize the results obtained in this
paper. Within perturbation theory, we have calculated
the asymptotic expansion of the eigenvalues (potential
curves) E(R) of the two-Coulomb-center problem in
the limits of united (R — 0) and separated (R —
00) atoms with the precision to O (R®) and O (R73),
respectively. The obtained formulae can be applied, in
particular, for constructing the one-electron relativistic
correlation diagrams of heavy quasi-molecules in the
region between the limits of united and separated
atoms. In this work, we have obtained analytic quasi-
classical solutions of the Dirac equation with an axially
symmetric potential, which does not permit complete
separation of variables. Our method allows the spin-
orbit and spin-spin interactions to be taken into account.
We have obtained the relativistic two-Coulomb-center
wave function of an electron and calculated the
exchange splitting of potential curves AFE, which are
expressed through the known characteristics of the
separated atoms: the charges of atomic cores Z; and
Z,, asymptotic coefficients Ay o, binding energies )\%’2 /2
and quantum numbers of the electron in the considered
states of atoms (ions). Our results and analogous
non-relativistic results [1] of the exchange splitting
show that the role of relativistic effects increases with
increasing the charges Z;, Z, and internuclear distance
R, and the relative contribution of relativistic effects
amounts to about 50 % even at Z = Z; = Z, =
45.

The work was partially supported by INTAS
(No 99-01326).
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PEJISITUBICTCHKA BAJAYA JIBOX KYJOHIBCHKUX
HEHTPIB JIJ15I MAJIUX TA BEJIMKIX
MIKIIEHTPOBUX BIJICTAHEN

O. Petimit, B. Jlazyp
Peszwowme

3a JomoMoro Teopil 30ypeHs moOyZOBAHO ACUMITOTHKHU ajiaba-
TUYHUX TE€PMiB PENATUBICTCHKOI 337a4i JBOX KYJOHIBCHBKUX II€HT-
piB B rDAHMYHAX BHIAJKAX MAJHAX TA BEJIMKHX MiXK’SIEPHHUX Bif-
ctaneit R. Ha ocuoBi meToxy mexxoBoro mapy Poka—/JleoHTOBHYIA
pO3pO06JIEHO PEJISITUBICTCHKY BEPCil0 KBA3iKJIACUYIHOrO HaOJIMIKEH-
He A7s piBHsAHHa Jlipaka 3 JOBIIBHUM aKCiaJbHO-CUMETPUIHUM
MOTEHIiaJIOM, [0 He JOIMYCKAE€ MOBHOTO BilOKDEMJIEHHS] 3MiHHHX.
3Hal/IeH0 ACUMITOTHKY KBAa3iKJIACHIHOTO THILY JJIsl JTBOIEHTPO-
BOI xBHsIbOBOI dyHKHIT AipakiBCHKOrO €JeKTPOHA B KJIACHYHO 3a-
6opoHeHiit obsacti. O6YnCIeHO TepIi JABa YJIEHW aCUMITOTHYHO-
ro poO3KJaay 3a OOepHEHHUMH CTeleHsAMH R BenwduHu OOMiHHO-
ro PO3ILEIUIEHHSI TEPMiB B DeJATHUBICTCHKIM ABOIEHTPOBiil 3ama-
qi.
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THE RELATIVISTIC TWO-COULOMB-CENTER PROBLEM

PEJIATUBUCTCKAA 3AJAYA JIBYX
HOEHTPOB JId MAJIBIX 1 BOJIBIITNX
MEKIIEHTPOBBIX PACCTOAHUN

KYJIOHOBCKHUX

0. Petimud, B. Jlasyp
Pesmowme

C mOMOIIbI0 TEOPUU BO3MYIIEHUM MOCTPOEHBI ACUMITOTUKH AJUA-
6aTUYECKUX TEPMOB PEJISITUBUCTCKOM 3a/a4u JABYX KYJOHOBCKHX
IEHTPOB B IPEJIEJbHBIX CJIyYasgX MAJbIX U OOJBIINX MeXKbs-
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nepHbIX paccrogumit R. Ha ocHOBaHWHM MeTONAa NOTPAHUYHO-
ro cinoss Poka—JleonToBuua paspaboTaHa PEISITUBUCTCKAsI Bep-
Chsl KBa3WKJIACCUYECKOTO MPUOJIMKEHUs [Jisi ypaBHenusi [lupa-
Ka C TIPOU3BOJIBHBIM aKCHAJBHO-CUMMETPUYIHBIM IIOTEHIIUAJIOM,
HEJIOMYCKAIOIMM TIOJIHOTO pa3/e/ieHnusi epeMeHHbIX. Haiigena
ACHMITOTHKA KBAa3WKJIACHYECKOTO0 THIA JJis BOJHOBOH (DYHK-
OUYA AUPAKOBCKOTO 3JIEKTPOHA B KJACCHYUECKH 3ANPENIEHHOH 00-
JacTH. BBIYHCIEHBI TEpBBIE BA UI€HA ACHMITOTHIECKOTO DPas-
JIO2KEHUusI 110 O6paTHLIM CTelleHsAM R BEJINYHUHBI O6MeHHOI‘O
pAaCIIenseHuss TEPMOB B DEJISITUBUCTCKOW JABYXIEHTPOBO# 3aja-
qe.
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