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Peculiarities of the vibrational spectra of several A2B® matrix due to the defect and G - Green’s function matrix

semiconductors with cation and anion vacancies and antisite
defects are studied theoretically. The energy of vacancy resonance
vibrations and local modes of antisite defects are determined for
CdTe, ZnTe, ZnSe, ZnS.

Crystal defects are known to determine important
characteristics of semiconductors and semiconductor
devices. Numerous experimental data, as the rule, do not
give the possibility to distinguish a native defect from
other defects of crystals. Therefore, for identification of
a defect, it is important to know its energy spectrum. In
the present work, we studied theoretically peculiarities
of the vibrational spectra of cation and anion vacancies
and antisite defects in several semiconductors of A2B®
group. The vibrational properties were studied by the
Green’s function method [1]. For calculation of Green’s
functions of a crystal, we employ the rigid ion model with
eleven parameters (RIM11) [2], that takes into account
both long-range and short-range interactions. The model
was used with great success in the theoretical studies of
phonon dispersion curves of A?BS semiconductors [1, 2].
The model parameters were deduced from available data
for A2B® semiconductors.

Defects of crystal structure give rise to new
vibrations in the phonon spectrum of the crystal. If the
energies of vibrations fall into the continuous phonon
spectrum of the crystal, these vibrations are resonant,
otherwise, if the energies lay in forbidden zones, the
vibrations are local [1]. Vibrational spectra of point
defects in cubic semiconductors were studied in [3]. It
is assumed that atomic interactions are not strongly
affected by the presence of a defect, therefore the effect
can be described as a small perturbation arising from
changes in atomic masses (the difference between the
masses of host and substituent atoms) and nearest
neighbour force constants [4]. Let V be the perturbation

of an ideal crystal. New states that arise due to the
perturbation are determined by the condition

Re{det(I — GV)} = 0. (1)

Equation (1) was solved in the basis of atomic
displacements from equilibrium positions. The
perturbation matrix has nonzero elements only in the
“defect space” of size 3n X 3n, where n is the number
of crystal sites directly perturbed by the defect. The
dimension of determinant (1) is 3x3, if only mass
changes are taken into account, and 15x15, if we
also allow for a change in the force constants A and
B which describe the interaction with four nearest
neighbours. It is assumed that constants A and B are
similarly affected by the presence of the defect. Then,
we can characterize these changes by a single parameter
t = (f— f"/f, where f = A, B. Solution of (1) is
considerably simplified if the symmetry of the defect
site is taken into account. The total representation of
Iges in the 15-dimensional space can be decomposed
into the irreducible representations A,, E, Fy, F5 of
the point group Ty: I'yey = A1 + E + Fi + 355,
These relationships specify the symmetry and number of
vibrations associated with point defects in a zinc-blence
structure crystal.

Taking into account the symmetry of the system the
determinant det(I —GV) can be decomposed into blocks
corresponding to the irreducible representation of the
group Ty:

det(I — GV) = [J(det(I = guriur).- (2)
ul

Here, g,r is the Green’s function of the perfect crystal
projected on the defect space; 0,1 - is the perturbation
defect matrix for a given irreducible representation.
Details about Green’s function calculations can be found
in [3, 4]. The change in atomic masses for the defect
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Fig. 1. Energy of resonance vibrations as the function of a change
of the nearest neighbour force constants for a cation vacancy in
CdTe. Solid lines — I'5 vibrations; dashed lines — I'; vibrations

system can be taken exactly as the difference between
the mass of host and substituent atoms, whereas the
change of nearest neighbour force constants is considered
as a parameter, in dependence of which the energy of
vibrations and their half-width were studied.

The solutions of Eq. (1) that fall into the continuous
phonon spectrum of the crystal give the energies of
resonance vibrations. The presence of a resonance
vibration results in a redistribution of the density of
states within the continuous vibration spectrum of the
crystal. Resonance vibrations, unlike local vibrations,
have finite half-width which is given by relation

r_ 1, Im{— gurour)
- _| d ~ A |w:wra
Wy 255 (Re(I — gurour))

3)

where w, is energy of resonance vibrations.

Performing the calculation of the energy of a localized
state, caused by a vacancy, we put the mass of a
defect to zero. Calculations show that, in the case of
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a vacancy in A2B® semiconductors, there are no local
modes, whose energies lay above the maximum energy
of the unperturbed phonon spectrum. Vacancies give
resonance states of I'y and I's symmetry. I'; vibration
involves the neighbouring atoms only in motion and
is observed at a certain change of the force constants,
whereas, for I's vibration, there is no restriction on ¢.

The calculated energies of resonant I's and Iy
vibrations for a cation vacancy in CdTe (as an example)
are presented in Fig.l1 as a function of the nearest
neighbour force constants. It is worth to note that
we take into account only vibrations, whose half-width
is much less than the maximal energy of phonons in
the unperturbed semiconductor. Cation vacancies in all
semiconductors give a resonance state in the optical
region of the crystal phonon spectrum between two
peaks of the phonon density of states. Consider a
vacancy in CdTe in more detail. As follows from the
calculations, the energy of the vibration caused by a
cation vacancy at t = 0 is equal to 148 cm~!. With a
change of the force constants within the limits —0.33 <
t < 0.31, the energy of the vibration is not changed
significantly: from 151 em~! at t = —0.33 to 144 cm ™" at
t = 0.33, and, at |¢t| > 0.35, the vibration disappears. The
same conclusions can be made for other semiconductors.
The energy of the discussed above resonant vibration
is: 178 ecm ™! for ZnTe, 230 cm ™! for ZnSe, 334 cm ™!
for ZnS. Besides, for ZnTe and ZnS, there are also
I's resonant states in the region of transverse acoustic
phonons (the energy of vibrations: 78 cm~! for ZnTe
and 133 cm™! for ZnS). For all semiconductors, the
low-energy vibration is observed, whose energy is lower
than the energy position of the first peak of the phonon
density of states. This state takes place at a quite great
value of the parameter ¢.

An anion vacancy unlike a cation one does not
give resonant I's states in the optical region of the
phonon spectrum. For all semiconductors, vibrations
in the region of longitudinal and transverse acoustic
phonons are observed. For ZnS, the situation is opposite.
The general picture of localized states due to cation
and anion vacancies for ZnS differ from those for other
semiconductors. It is caused by the fact that the

T able. Energy of resonance I's vibrations wr, (cm—1) for
cation and anion vacancy in A2B® semiconductors (¢t = 0)

CdTe | CdTe ZnTe ZnTe ZnSe ZnSe ZnS ZnS
cation | anion | cation | anion | cation | anion | cation | anion
142 52 72 130 213 92 118 306
148 56 78 141 230 101 133 323
154 114 176 175 237 170 198 338
126 178 188 260
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Fig. 2. Energy of local vibrations as the function of a change of
the nearest neighbour force constants for antisite defects in A2BS

semiconductors.

relation between the masses in ZnS is greater than unity,
whereas, for CdTe, ZnTe and ZnSe, it is less than unity.

Resonant T’y vibrations caused by a cation vacancy
are observed only in the region of longitudinal acoustic
phonons, and an anion vacancy gives I'y vibrations in
the region of optical and transverse acoustic phonons.
For ZnS, the situation is again opposite. Note that I’y
vibrations take place, as the rule, at || > 0.35.

So, the obtained results give the energy regions where
one can observe possible vacancy resonant vibrations.
The change of the nearest neighbour force constants,
which appears due to a vacancy, can also be estimated.

Antisite defects give rise to local vibrations whose
energies lay above the continuous phonon spectrum of
the crystal. These modes take place only in the case
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where the mass of the substitution atom is less than
the mass of the host atom. Therefore, for studied A2B®
semiconductors, local modes are observed in the case
of an anion antisite defect in CdTe, ZnTe and ZnSe,
and a cation antisite defect in ZnS. The energy of
these vibrations as the function of a change of the
force constants is presented in Fig.2. The vibrations are
observed at negative values of the parameter ¢, which
means that an enforcement of force constants takes place
due to the defect. For CdTe, this enforcement is quite
large for t < —0.4. For ZnTe practically at all values of
the parameter ¢, one can expect the existence of a local
mode due to the antisite defect.

Having an information about characteristic localized
states above the continuous phonon spectrum and using
the presented results, it is possible to identify the antisite
defect in the semiconductor.
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KOJIMBAJIBHI CTAHU BJIACHUX JE®EKTIB
YV HATIIBOPOBIJHUKAX T'PYIIU A2BS

I.M. Papenxo, 1.M. FOpitiuyx
Peszwome

Teoperuwno gocmifkeHO 0COOIUBOCTI KOJMBAJIBLHOTO CIEKTDPA Psi-
ay mamisnposigruxis rpynun A2B® y sunaaxy wasmmocTi B HuX
i30TbOBAHUX KATIOHHUX TA AHIOHHUX BAKAHCIiN, a TAKOXX AHTUBY3-
snoBux gedexrtis. Buznaueno emeprerutai 06s1acTi MOXKINBOTO BHU-
HukHeHHs B HamiBnpoBiguukax CdTe, ZnTe, ZnSe, ZnS pe3onamc-
HHX KOJIHBaHb, 3yMOBJICHUX HASIBHICTIO BAKAHCIii, I JOKAIBHUX KO-
JIUBaHb, 3yMOBJIEHUX AHTHUBY3JIOBUMH AedeKTaMu.

KOJIEBATEJIBHBIE COCTOAHNS COBCTBEHHBIX
JJEOEKTOB B TOJIVIIPOBOJTHUKAX T'PVIIIILI A2B6

U.M.Papenxo, U.H. FOpuiinyx
PeszwowMme

Teoperuveckn uccaemoBaHbl 0COOEHHOCTH KOI€0ATEIHHOTO CIEK-
Tpa paza monynpoBogHukos rpynmsl A2B6 B ciyuae manmuma B
HUX U30JIUPOBAHHBIX KAaTUOHHBIX U aHUOHHBIX BaKaHCHﬁ, a TaK>Xe
aHTHy3eJbHBIX gedekToB. Onpeesensl sHepreTudeckue 00/1acTh
BO3MOXKHOTO BO3HHUKHOBeHHs B monynpoBogHukax CdTe, ZnTe,
ZnSe, ZnS pe30HAHCHBIX KOoste0aHuit, 00yCIOBIEHHBIX BAKAHCHSIMH,
U JIOKAJIBHBIX KOJeOaHWH BCIIECTBHE aHTUY3€IbHBIX AeeKTOB.
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