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In this article, we follow from a separate object to the group of its
automorphisms and its invariants, then to category of such objects
and functors on it. Thus, from the theory of invariants, we go to
the theory of equivariant maps and then to the problem of the
description functors from one category in other. As was written by
Herman Weyl, �F. Klein has realized and applied a group as the
great organizing and simplifying principle in Algebra, Geometry
and Analysis.� Today this mission of Groups goes to Categories.

1. Introduction

Category theory provides a compact method of encoding
mathematical structures in a uniform way, thereby
enabling the use of general theorems on, for example,
equivalence and universal constructions. Any geometric
structure (including the invariant structures of physics
and calculus) is determined in some category of fiber
bundle spaces associated with the given principal bundle
over some basic manifold. In the frames of F. Klein
program, the basic manifold is a homogeneous (as usual),
G-space and the space of stratification � the group G
by itself is stratified with respect to the residue classes.
In general case it is advisable to consider the acting
of a pseudogroup of some local diffeomorphisms on the
basic manifold. This action can be lifted to the principal
bundle up to the action of the pseudogroup of all local
automorphisms of this bundle. In both cases, the set of
all bundles associated with the original principal bundle
forms the category which morphisms are G-scopes.

Definition 1.1. A category is a quadruple (Ob,Hom,
id, ◦) consisting of:
(C1) a class Ob of objects;
(C2) a set Hom(A,B) of morphisms for each ordered
pair (A,B) of objects;
(C3) a morphism idA ∈ Hom(A,A); for each object A,

the identity of A;
(C4) a composition law associating a morphism g ◦ f ∈
Hom(A,C) to each pair of morphisms f ∈ Hom(A,B)
and g ∈ Hom(B,C);
which is such that:
(M1) h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f ∈ Hom(A,B),
g ∈ Hom(B,C), and h ∈ Hom(C,D);
(M2) idB ◦ f = f ◦ idA = f for all f ∈ Hom(A,B);
(M3) the sets Hom(A,B) are pairwise disjoint.

This last axiom is necessary so that given a morphism
we can identify its domain A and codomain B, however
it can always be satisfied by replacing Hom(A,B) by the
set Hom(A,B)× ({A}, {B}).

Examples

1.1. The classic example is Sets, the category with
sets as objects and functions as morphisms, and the usual
composition of functions as a composition. But lots of the
time in mathematics one is some category or other, e.g.:

Vectk � vector spaces over a field k as objects; k-
linear maps as morphisms;

Group � groups as objects, homomorphisms as
morphisms;

Top � topological spaces as objects, continuous
functions as morphisms;

Diff � smooth manifolds as objects, smooth maps as
morphisms;

Ring � rings as objects, ring homomorphisms as
morphisms;
or in physics:

Symp � symplectic manifolds as objects,
symplectomorphisms as morphisms;

Poiss � Poisson manifolds as objects, Poisson maps
as morphisms;

Hilb � Hilbert spaces as objects, unitary operators
as morphisms.
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24 2000, Uzhgorod � Kyiv � Ivano-Frankivsk � Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th
birthday.
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1.2. The typical way to think about symmetry is
related to the concept of a �group�. But to get a concept
of symmetry that's really up to the demands put on it
by modern mathematics and physics, we need � at the
very least � to work with a �category� of symmetries,
rather than a group of symmetries.

To see this, first ask: what is a category with one
object? It is a � �monoid�. The �usual� definition of a
monoid is as follows: a set M with an associative binary
product and a unit element 1 such that al = la = a
for all a in M . Monoids abound in mathematics; they
are, in a sense, the most primitive interesting algebraic
structures.

To check that a category with one object is
�essentially just a monoid�, note that if our category C
has one object x, the set Hom(x, x) of all morphisms from
x to x is indeed a set with an associative binary product,
namely composition, and a unit element, namely idx.

How about categories in which every morphism is
invertible? We say a morphism f : x → y in a category
has inverse g : y → x if f ◦ g = idy and g ◦ f = idx.
Well, a category in which every morphism is invertible
is called a �groupoid�.

Finally, a group is a category with one object in
which every morphism is invertible. It's both a monoid
and a groupoid!

When we use groups in physics to describe symmetry,
we think of each element g of the group G as a �process�.
The element 1 corresponds to the �process of doing
nothing at all�. We can compose processes g and h �
do h and then g � and get the product g ◦ h. Crucially,
every process g can be �undone� using its inverse g−1.

So: a monoid is like a group, but the �symmetries�
no longer need be invertible; a category is like a monoid,
but the �symmetries� no longer need to be composable.

1.3. The operation of �evolving initial data from
one spacelike slice to another� is a good example of a
�partially defined� process: it only applies to initial data
on that particular spacelike slice. So the dynamics in
special or general relativity is most naturally described
using groupoids . Only after pretending that all the
spacelike slices are the same can we pretend we are using
a group. It is very common to pretend that groupoids
are groups, since groups are more familiar, but often
insight is lost in the process. Also, one can only pretend
a groupoid is a group if all its objects are isomorphic.
Groupoids really are more general.

So: in contrast to a set, which consists of a static
collection of �things�, a category consists not only of
objects or �things� but also morphisms which can viewed
as �processes� transforming one thing into another.

Similarly, in a 2-category, the 2-morphisms can be
regarded as �processes between processes�, and so on.
The eventual goal of basing mathematics upon omega-
categories is thus to allow us the freedom to think of any
process as the sort of thing higher-level processes can go
between. By the way, it should also be very interesting to
consider �Z-categories� (where Z denotes the integers),
having j-morphisms not only for j = 0, 1, 2, ... but also
for negative j. Then we may also think of any thing as
a kind of process.

Definition 1.2. Let X and Y be two categories. A
functor from X to Y is a family of functions F which
associates an object FA in Y to each object A in X and
a morphism Ff ∈ HomY(FA,FB) to each morphism
f ∈ HomX(A,B), and which is such that:
(F1) F (g ◦ f) = Fg ◦ Ff for all f ∈ HomX(A,B) and
g ∈ HomY(B,C);
(F2) F idA = idFA for all A ∈ Ob(X).

There is the definition of left and right adjoint
functors. In the following we shall need two such
adjoint constructions. First, in a given category the left
adjoint of the diagonal functor (if it exists) is called the
coproduct and the right adjoint (if it exists) is called the
product: in Sets, the product is the Cartesian product
and the coproduct is the disjoint union. Second, let the
category X be concrete over some category A in the
sense that there exists a faithful functor U from X to A,
usually called the forgetful functor. The left adjoint to
this functor (if it exists) is then called the free functor. A
standard example is the forgetful functor from complete
metric spaces to metric spaces, whose left adjoint is
the completion functor. On the next higher level of
abstraction the notion of a natural transformation is
settled. It is a kind of a function between functors and
is defined as follows.

Definition 1.3. Let F : X → Y and G : X → Y
be two functors. A natural transformation α : F → G is
given by the following data.

For every object A in X, there is a morphism
αA : F (A)→ G(A) in Y such that, for every morphism
f : A→ B in X the following diagram is commutative:

F (A) αA−→ G(A)
F (f) ↓ ↓ G(f)
F (B) αB−→ G(B).

Commutativity means (in terms of equations) that
the following compositions of morphisms are equal:
G(f) ◦ αA = αB ◦ F (f).
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The morphisms αA, A ∈ Obj(A), are called the
components of the natural transformation α.

Examples

1.4. So, we can certainly speak, as before, of the
�equality� of categories. We can also speak of the
�isomorphism� of categories: an isomorphism between C
and D is a functor F : C → D for which there is an
inverse functor G : D → C. I.e., FG is the identity
functor on C and GF the identity on D, where we
define the composition of functors in the obvious way.
But because we also have natural transformations, we
can also define a subtler notion, the �equivalence� of
categories. An equivalence is a functor F : C → D
together with a functor G : D → C and natural
isomorphisms a : FG → 1C and b : GF → 1D. A
�natural isomorphism� is a natural transformation which
has an inverse.

1.5. As we can �relax� the notion of equality to
the notion of isomorphism when we pass from sets to
categories, we can relax the condition that FG and
GF equal identity functors to the condition that they
be isomorphic to identity functor when we pass from
categories to the 2-category Cat. We need to have the
natural transformations to be able to speak of functors
being isomorphic, just as we needed functions to be
able to speak of sets being isomorphic. In fact, with
each extra level in the theory of n-categories, we will
be able to come up with a still more refined notion of
�n-equivalence� in this way.

2. Method of Additional Structures on the
Objects of a Category

2.1. Basic Definitions

To use the categorical language more efficient, we
introduce the general concept of an additional structure
on objects of a category [1]. This is the concept of
concrete category but over any category.

In a category, two objects x and y can be equal or
not equal, but they can be isomorphic or not, and if they
are isomorphic, they can be isomorphic in many different
ways. An isomorphism between x and y is simply a
morphism f : x → y which has an inverse g : y → x,
such that f ◦ g = idy and g ◦ f = idx.

In the category Sets, an isomorphism is just a
one-to-one and onto a function, i.e. a bijection. If we
know two sets x and y are isomorphic we know that
they are �the same in a way�, even if they are not
equal. But specifying an isomorphism f : x → y does

more than say x and y are the same in a way; it
specifies a particular way to regard x and y as the
same.

In short, while equality is a yes-or-no matter, a
mere property, an isomorphism is a structure. It is quite
typical, as we climb the categorical latter (here from
elements of a set to objects of a category) for properties
to be reinterpreted as structures.

Definition 2.1. We tell that a functor F : C → C′
defines an additional C−structure on objects of the
category C′ if

1. ∀X,Y ∈ Ob(C), the map F : C(X,Y )→ C′(F (X),
F (Y )) is injective,

2. ∀X ∈ Ob(C), Y ∈ Ob(C′) and an isomorphism
u : Y → F (X), there is an object Ỹ ∈ Ob and
an isomorphism ũ : Ỹ → X such that F (Ỹ ) = Y
and F (ũ) = u.

Such a functor is called a forgetful functor.

Almost all usual mathematical structures are
structures on sets in this sense and there are
corresponding forgetful functors to the category Sets of
sets.

A forgetful functor F : C → M(C′) defines a C-
structure on morphisms of the category C′.

For our general structures, we can define usual
constructions:

� inverse and direct images of structures,

� restrictions on subobjects,

� different products of structures.

We can define the category Str(C) of forgetful
functors to the category C. It is a full subcategory of
the category Cat/C of all categories over C.

Let us consider some properties of structures (=
forgetful functors):

� � In the category Str(C), the (bundle) product
always exists. It gives a �union� structures.

� � Any functor f : C → C′ transfers structures to
the inverse direction, i.e., it defines the functor

f∗ : Str(C′)→ Str(C) : F 7→ f∗F.

� � For a forgetful functor F : C → C′, the functors

(F◦) = Funct(id, F ) : Funct(B, C)→ Funct(B, C′)

(◦F ) = Funct(F, id) : Funct(C′,B)→ Funct(C,B)
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are forgetful functors.

� � One of constructions which transfers the
structure
F : C → Sets defined on sets to objects of any
category B, is the functor

h : B → Funct(B◦,Sets) : B 7→ hB .

Thus, we have

h∗BC −→ C
↓ ↓ F
B′ hB−→ Sets

� � If a functor A : B → C is injective on
morphisms (condition (1) in the definition of
forgetful functor), then a forgetful functor F :
B′ → C and an equivalence i : B → B′ exist, such
that the following diagram is commutative:

B −→ C
↓ ↗F

B′

2.2. Structures on Topological Spaces

Among of structures on topological spaces we can select
that, which is compatible with the topology. Let Top
be a category of some topological spaces with a forgetful
functor F : Top→ Sets.

The categories associated with a topological space
T ∈ Ob(Top) are as follows:

� The category T (T ), where Ob(T (T )) is the set of
all open subsets of T , and Mor(T (T )) is all their
inclusions.

� The category (pseudogroup) P(T ), where
Ob(P(T )) is the set of all open subsets of T , and
Mor(P(T )) is all their homeomorphisms.

Functors T (T )◦ → Sets are called presheaves of sets
on T . Some of them are called sheaves. Thus we have
the inclusions

Sh(T ) ⊂ Presh(T ) ⊂ Funct(T (T ),Sets).

The Grothendieck topology on a category is defined
by saying which families of maps into an object
constitute a covering of the object and certain axioms
are fulfilled. A category together with the Grothendieck
topology on it is called a site. For a site C, one defines the
full subcategory Sh(C) ⊂ Presh(C) = Funct(C◦,Sets).

The objects of Funct(C◦,Sets) are called presheaves on
the site C, and the objects of Sh(C) are called sheaves on
C.

For any category there exists the finest topology such
that the all representable presheaves are sheaves. It is
called the canonical Grothendieck topology. Topos is a
category which is equivalent to the category of sheaves
for the canonical topology on them.

Hence, the topology is already transferred on a
category so now, it is natural to consider all questions
connected to local properties in the language of toposes
and sheaves.

Here, we shall not consider local structures on toposes
in general, and we shall restrict ourselves with the
consideration of the elementary case of the category
Top.

Definition 2.2. A structure defined by a forgetful
functor f : C → Top is called a local structure if
∀C ∈ Obj(C) and any inclusion maps i : U →

f(C) of the open subset U , an object Ũ ∈ Ob(C) and
a morphism ĩ ∈ C(Ũ , C) exist such that f(Ũ) = U ,
f (̃i) = i. This C−structure Ũ is denoted by C|U and
called a restriction of C on U .

In other words, we can restrict ourselves with local
structures on open subsets.

For a local structure F : C → Top and each object
X ∈ Obj(Top), there is the presheaf of categories

T (X)◦ → Cat : U 7→ F−1(U, idU ).

Often this presheaf is a sheaf.

2.3. Structures on Smooth Manifolds

Let M be the category of smooth (∞-differentiable)
manifolds with forgetful functor f : M → Top, which
defines a local structure and the presheaves of these
structures are sheaves. On the category M, there is the
tangent functor T :M→M : M 7→ T (M).

Its iterations give us almost all interesting functors
onM. Among them, we shall note the following:

� The cotangent functor T ∗ : M → M : M 7→
T ∗(M).

� For a manifold M and natural number k =
0, 1, . . . , the functor of k-jets Jk :M→M : N 7→
Jk(M,N).

� For a manifold M , x ∈ M, and natural number
k = 0, 1, . . . the functor of k-jets at the point x
Jkx :M→MJkx (M,N).
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Any category C of structures on smooth manifolds
(or on M/) has an additional structure, which gives us
a possibility to define �smooth families of morphisms�.

Definition 2.3. Let M,M ′,M ′′ ∈M. A map

Φ : M →M(M ′,M ′′) : x 7→ Φx

is called a smooth family of morphisms if there exists a
smooth map φ : M ×M ′ →M ′′ such that

∀x ∈M, x′ ∈M ′ Φx(x′) = φ(x, x′).

Thus, we get the class of categories with smooth
families and it appears the natural condition on functors.

Definition 2.4. A functor is called a smooth functor
if it maps each smooth family to a smooth family.

Of course, all functors T, T ∗, Jk, Jkx are smooth.

2.4. Double Categories as an Additional

Structure on Categories

In any category C with bundle products for some
morphisms, we can define so-called intern categories.
This is a monoid in the multiplicative category C//O
of pairs of (special) morphisms D,R : M → O with the
bundle product:

for ξ = (D,R : M → O) and ξ′ = (D′, R′ : M → O)
we get ξ ? ξ′ = (D ◦ π1, R

′ ◦ π2 : M ×O M ′ → O) where
the unit objects idM : 0 → M and idM ′ : 0 → M ′, and
the following diagram is commutative:

M ×O M ′
π2−−−−→ M ′

π1

y yR′ .
M

R−−−−→ O

So an intern category is an object ξ = (D,R : M− >
O) with a multiplication µ : ξ ? ξ′ → ξ and the unit
idM : O →M .

Now we consider such an intern category as the
category Cat of categories and will call it as double
categories [2].

Definition 2.5. A double category D consists of the
following:

(1) A category D0 of objects Obj(D0) and morphisms
Mor(D0) of 0-level.

(2) A category D1 of morphisms Obj(D1) of 1-level
and morphisms Mor(D1) of 2-level.

(3) Two functors d, r : D1
−→→D0.

(4) A composition functor

∗ : D1 ×D0 D1 → D1,

where the bundle product is defined by the commutative
diagram

D1 ×D0 D1 π2−→ D1

π1 ↓ ↓ d
D1 r−→ D0

(5) A unit functor ID : D0 → D1, which is a section
of d, r.

There are strong and weak double categories.

Now we see that, for two objects A,B ∈ Obj(D0)
there are 0-level morphisms D0(A,B), which we note
by ordinary arrows f : A → B, and 1-level morphisms
D(1)(A,B), which we note by the arrows ξ : A V B
for A = d(ξ) and B = r(ξ). So with a 2-level morphism
α : ξ → ξ′, where ξ : A V B and ξ′ : A′ V B′, we can
associate the diagram

A
ξ

V B ξ
d(α) ↓ ↓ r(α) 7−→ ↓ α

A′
ξ′

V B′ ξ′

and arrow α : d(α)V r(α).
On each level we have the corresponding

compositions:

0-level
(A

f→ B
g→ C)

ξ
α→ η

β→ ς

7→
7→

g ◦ f : A→ C
β ◦ α : ξ → ς

1-level (A
ξ

V B
η

V C) 7→ η ∗ ξ : AV C

2-level (f
α
V g

β

V h) 7→ β ∗ α : f V h

The composition on 2-level associated with the
diagram

A
ξ

V B ξ
d(α) ↓ ↓ r(α) ↓ α

A′
ξ′

V B′ 7−→ ξ′

d(α′) ↓ ↓ r(α′) ↓ α′

A′′
ξ′′

V B′′ ξ′′

Thus, a double category D consists of
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• four sets Obj(D0),Mor(D0),Obj(D1),Mor(D1),
and eight maps of type d, r

Obj(D1) ←−← Mor(D1)
↓↓ ↓↓

Obj(D0) ←−← Mor(D0)

• two categories are associated D0, D1, and almost
categories: D(2) with the set of objects Obj(D0)
and the set of morphisms Obj(D1), D(3) with the
set of objects Mor(D0) and the set of morphisms
Mor(D1),

• r, d : D(3) → D(2) are almost functors.

Now we can define, for double categories, double
(category) functors and their morphisms, double
subcategories, the category DCat of double categories,
equivalence of double categories, dual double
categories (changed direction of 1-level morphisms, i.e.,
d, r are transposed), and so on.

Definition 2.6. A double category functor F : D →
D′ is a pair F0 : D0 → D′0, F1 : D1 → D′1 of usual
functors such that

d′ ◦ F1 = F0 ◦ d, r′ ◦ F1 = F0 ◦ r,
∀ ξ, ξ′ ∈ Obj(D1) ϕξ,ξ′ : F1(ξ ∗ ξ′)→̃F1(ξ) ∗′ F1(ξ′),

∀ A ∈ Obj(D0) ϕA : F1(IDA)→̃IDF0(A).

2.5. Examples of Double Categories

Examples considered below show that double categories
are sufficiently natural for mathematics.

Example 2.1. Bicategories are the partial case
of a double category D when the category D0 is
trivial, i.e., it has only identical morphisms and
compositions of 1-level and 2-level morphisms are
associative.

Example 2.2. For each category C, we have the
canonical double category Morph(C) of morphisms. Let
C be a category, T be the diagram • → •, TC be
the category of diagrams in C of type T , let D0 =
C and D1 = TC. The functor d maps the diagram
f : A → B into the object A, the functor r maps
this diagram into the object B, and so on. It is easy
to see that we get a double category D which is
noted by Morph(C). Here Obj(D1) = Mor(D0), a 2-
level morphism f V g is a pair (u, v) of morphisms

u, v ∈ Mor(C) with the usual composition from the
commutative diagram

A
u→ A′

f ↓ ↓ f ′
B

v→ B′

Example 2.3. Let C be a category with bundle
products, i.e., for all morphisms u, v to Y , the universal
square

X ×Z Y −→ Y
↓ ↓ v
X

u−→ Z

exists. And let T be the following diagram

• ← • → •,

TC be the category of diagrams in C of type T . Now
we define the double category D with D0 = D and
D1 = TC. Two functors

d, r : TC → C,

where the functor d maps the diagram A←M → B into
the object A, the functor r maps this diagram into the
object B. The composition: for two 1-level morphisms

ξ = (A π← M
f→ B) : A V B and ξ′ = (B π′←

M ′
′ f ′→ C) : B V C we define their composition

ξ′ ◦ ξ = (A π◦π1← M ×B M ′
f◦π2→ C), where the bundle

product is defined by the universal diagram

M ×B M ′ π2−→ M ′

π1 ↓ ↓ π′

M
f→ B

A 2-level morphism is a triple α = (u, v, w) : ξ → ξ′ from
the commutative diagram

M
f→ B

π ↓ ↘ v ↘ w

A M ′
f ′→ B′

↘ u π′ ↓

A′

with the evident composition.

Example 2.4. Let us consider a multiplicative
(tensor) category (C,⊗, U, u). Then we have the double

270 ISSN 0503-1265. Óêð. ôiç. æóðí. 2002. Ò. 47, N 3



METHOD OF ADDITIONAL STRUCTURES

category with D1 = C, and D0 = (∗, ∗), e.c. a
trivial category with one object and one morphism. The
composition is

D1 ×D0 D1 = C × C ⊗→ C.

Let us consider it in more details. Let (C,⊗, U, u) be a
multiplicative (tensor) category with multiplication

⊗ : C × C → C : (X,Y ) 7→ X ⊗ Y.

For the functor isomorphism of associativity

ϕ : ⊗ ◦ (id,⊗)→ ⊗ ◦ (⊗, id),

we write

ϕX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z,

so the pentagon

X ⊗ (Y ⊗ (V ⊗W ))
ϕX,Y,V⊗W−→ (X ⊗ Y )⊗ (V ⊗W )

ϕX⊗Y,V,W−→ ((X ⊗ Y )⊗ V )⊗W
idX ⊗ ϕY,V,W ↓ ϕX,Y,V ⊗ idW ↑

X ⊗ ((Y ⊗ V )⊗W )
ϕX,Y⊗V,W−→ (X ⊗ (Y ⊗ V ))⊗W

is commutative.
Then we have the double category D with D0 = C and D1 such that

Obj(D1) = {(X,x)|A,B,X ∈ Obj(C), x : X ⊗A→ B}.

So, we write ξ = (X,x) : A V B, and for ξ ∈ Obj(D1), we denote ξ = (Xξ, xξ), d(ξ) = Aξ, r(ξ) = Bξ.
2-level morphisms

D1(ξ, ξ′) = {(f1, f2, f3) | commutative diagram |
X ⊗A x−→ B

f3 ⊗ f1 ↓ ↓ f ′2
X ′ ⊗A′ x′−→ B′

}

and d(f1, f2, f3) = f1, r(f1, f2, f3) = f2.
Composition D1 ×D0 D1 → D1 is defined as follows

for A
ξ

V B
ξ′

V B′ ξ ◦ ξ′ = (A,B′, X ′X,x′′), where x′′ is the following composition

(X ′ ⊗X)⊗A
ϕ−1
X′,X,A−→ X ′ ⊗ (X ⊗A)

idX′⊗x−→ X ′ ⊗B x′−→ B′.

Associativity. For A
ξ

V B
ξ′

V B′
ξ′′

V B′′, the left column gives xξ′′◦(ξ′◦ξ), the right column gives x(ξ′′◦ξ′)◦ξ

(X ′′ ⊗ (X ′ ⊗X))⊗A ((X ′′ ⊗X ′)⊗X)⊗A
ϕ−1
X′′,X′⊗X,A ↓ ϕ−1

X′′⊗X′,X,A ↓

X ′′ ⊗ ((X ′ ⊗X)⊗A) (X ′′ ⊗X ′)⊗ (X ⊗A)

idX′′ ⊗ ϕ−1
X′,X,A ↓ idX′′⊗X′ ⊗ x ↓

X ′′ ⊗ (X ′ ⊗ (X ⊗A)) (X ′′ ⊗X ′)⊗B
idX′′ ⊗ (idX′ ⊗ x) ↓ ϕ−1

X′′,X′,B ↓

X ′′ ⊗ (X ′ ⊗B) = X ′′ ⊗ (X ′ ⊗B)
idX′′ ⊗ x′ ↓ idX′′ ⊗ x′ ↓

X ′′ ⊗B′′ = X ′′ ⊗B′
x′′ ↓ x′′ ↓
B′′ B′′
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So we have isomorphism
(ϕX′′,X′,X , idA′ , idB′) : ξ′′ ◦ (ξ′ ◦ ξ)→ (ξ′′ ◦ ξ′) ◦ ξ.

2.5.1. Bundle of Categories

Let ϕ : F → C be a functor and U ∈ ObjC for all objects.
We denote by FU = ϕ−1(U, idU ) the subcategory of F
with

Obj FU = {u ∈ ObjF | ϕ(u) = U} ,
Mor FU = {f ∈ Mor F | ϕ(f) = idU} .

Let (f : v → u) ∈ MorF , ϕ(f : v → u) = (g : V → U).
Then one tells that f is Descartes's morphism, or that v
is inverse image g∗(u) of the object u, if ∀v′ ∈ Obj(FV )
and the map

f∗ : FV (v′, v)→ Fg(v′, u) : h 7→ f ◦ h

is a bijection. Here, we have

Fg(v, u) def= {h ∈ F(v, u) | ϕ(h) = g} .

So we have the diagram

∀ v′
↓h ↘ f◦h

v −→
f

u

V
g−→ U

A functor P : F → C is called a bundle of categories
if inverse images allows exist and a composition of two
Descartes morphisms is a Descartes morphism too. Then
g∗ may be transferred to a functor F(U) → F(V ), and
(g1 ◦ g2)∗ will be canonical isomorphic to g∗2 ◦ g∗1 .

Example 2.5. The projection

Π1 : Mor(Top)→ Top : (f : X → Y ) 7→ X

is a bundle of categories. For different structures on
topological spaces, it is not always truth for the category
of all morphisms, but may be truth for a subcategory.

Example 2.6. Let Sub be a subcategory in
Mor(Man) consisting from submersions. Then the
projection

Π2 : Sub→ Man : (f : X → Y ) 7→ Y

is a bundle of categories and for each morphism h ∈
Man(B′, B), we have the functor of inverse image:

h∗ : SubB → SubB′ : (f : M → B) 7→ (B′×BM → B′).

The set Γ(π) of sections of an submersion π : M → B is
the set of morphisms Sub(idB , π).

Example 2.7. Let Mod be the category of pairs
(R,M), where R is a ring and M is a left R-module. Let
Rings be the category of rings. Then the functor

Mod→ Rings : (R,M) 7→ R

is a bundle of categories and for each morphism h ∈
Ring(R′, R), we have the functor of inverse image:

h∗ : R-mod→ R′-mod : M 7→ R′ ⊗RM.

2.6. Fibers of Functor Morphisms

The Grothendieck's definition of a fiber of a functor
morphism is applicable to morphisms of functors from
any category to the category Sets of sets. Let F,G :
C → Set, and ϕ : F → G be their morphism. For each
object S ∈ Obj(C) and an element α ∈ G(S), the fiber
ϕα of ϕ over α is the functor

ϕα : C/S → Sets : f 7→ ϕα(f),

where, for a morphism f : T → S,

ϕα(f) = {β ∈ F (T ) | G(f) ◦ ϕT (β) = α} .

So we have the diagram

ϕα(f) ⊂ F (T ) F (S)
ϕT ↓ ↓ ϕS
G(T )

G(f)−→ G(S) 3 α .

3. Multiplicative Structures on Categories

3.1. Concepts and State of the Art

The prototype of a category is the category Sets of
sets and functions. The prototype of a 2-category is the
category Cat of small categories and functors. Cat has
a more structure on it than a simple category because
we have natural transformations between functors. This
can be viewed in the following way: The extra structure
implies that every morphism set Hom(C,D) in Cat
is actually not only a set but a category itself, where
the composition and identities in Cat are compatible
with this categorical structure on the Hom-sets (i.e.,
composition and identities are functorial with respect to
the structure on the Hom-sets). A general category with
this kind of extra structure is called a 2-category.
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The definition of 2-category can be put in a more
general setting (which will be convenient below) by using
the language of enriched categories. A category C is
enriched over a category V if every Hom-set in C has the
structure of an object in V and if the composition and
identities in C are compatible with this extra structure
on the Hom-sets. So, a 2-category is a category enriched
over Cat. Now, the (small) 2-categories again form a
category 2-Cat and a 3-category can be defined as a
category enriched over 2-Cat (indeed, 2-Cat turns out
to be a 3-category itself). In this way we can proceed
iteratively to define n-categories and then ω-categories
as categories involving n-categorical structures of all
levels.

A specific recipe for obtaining monoidal (braided,
etc.) 2-categories via Hopf categories is proposed by
Crane and Frenkel [3]. Namely, that it is supposed the
2-category of module-categories over a Hopf category
now plays an important role in 4-dimensional topology
and TQFT. Although the theory of Hopf categories
is devised, in general, by Neuchl [4], interesting
examples are still missing. In particular, the Hopf
category, underlying the Lusztig's canonical basis
[5] of a quantized universal enveloping algebra, is
not constructed yet. It was proposed to define it
as a family of abelian categories of perverse l-adic
sheaves equipped with some functors of multiplication
and comultiplication [6]. These perverse sheaves are
equivariant in the sense of Bernstein and Lunts [7].

It turns out that the notions of n-category and ω-
category are not general enough for several interesting
applications. What one gets there are weak versions of
these concepts (instead of weak n-category, sometimes
the notions of bicategory, tricategory, etc. are used). Let
us shortly explain what this means: In a category, it does
not make sense to ask for equality of objects but the
appropriate notion is isomorphism. In the same way, in a
2-category, we should not ask for equality of morphisms

but only for equality up to an invertible 2-morphism (the
morphisms between the morphisms, e. g., the natural
transformations in Cat). Applying this to the categorical
structure itself (i.e., requiring associativity and identity
properties only up to natural equivalence) leads to the
notion of weak 2-category (or bicategory). In the same
way, we can weaken the structure of an n-category up
to the (n− 1)-th level to obtain a weak n-category.

The point making this weakening to be an involved
matter is that, in general, we need so-called coherence
conditions in addition to the weakened laws in order
to assure that some properties, known from the strict
case, hold. E.g., to assure that associativity is iteratively
applicable (i.e., that we can up to a 2-isomorphism
rebracket composites involving more than three factors),
we need a coherence condition stating that even four
factors can be rebracketed (and the other cases follow
then). See the literature given above for details.

No satisfactory versions of a weak n-category for
higher n and of a weak ω-category were available for a
long time but now there are several approaches at hand
[8�10]. The relationship between these approaches and
a universal understanding of these structures have still
to be achieved.

3.2. Multiplicative Categories

Definition 3.1. A multiplication in the category C is
an associative functor

∗ : C × C → C : (X,Y ) 7→ X ∗ Y.

An associativity morphism for ∗ is a functor
isomorphism

ϕX,Y,Z : X ∗ (Y ∗ Z)→ (X ∗ Y ) ∗ Z

such that, for any four objects X,Y, Z, T the following
diagram is commutative:

X ∗ (Y ∗ (Z ∗ T ))
ϕX,Y,Z∗T−→ (X ∗ Y ) ∗ (Z ∗ T )

ϕX∗Y,Z,T−→ X ∗ Y ∗ Z ∗ T
↓ idX ∗ ϕY,Z,T ↑ ϕX,Y,Z ∗ idT

X ∗ ((Y ∗ Z) ∗ T )
ϕX,Y ∗Z,T−→ (X ∗ (Y ∗ Z)) ∗ T

X ∗ (Y ∗ (Z ∗ T ))
ϕX,Y,Z∗T−−−−−−→ (X ∗ Y ) ∗ (Z ∗ T )

ϕX∗Y,Z,T−−−−−−→ X ∗ Y ∗ Z ∗ T

idX∗ϕY,Z,T
y xϕX,Y,Z∗idT

X ∗ ((Y ∗ Z) ∗ T )
ϕX,Y ∗Z,T−−−−−−→ (X ∗ (Y ∗ Z)) ∗ T
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A commutativity morphism for ∗ is a functor
isomorphism

ψX,Y : X ∗ Y → Y ∗X

such that, for any two objects X,Y , we have

ϕX,Y ◦ ϕY,X = idX∗Y : X ∗ Y → X ∗ Y.

The associativity ϕ of morphisms and commutativity
ψ are compatible if, for any three objects X,Y, Z, the
following diagram is commutative:

X ∗ (Y ∗ Z)
ϕX,Y,Z−→ (X ∗ Y ) ∗ Z ψX∗Y,Z−→ Z ∗ (X ∗ Y )

↓ idX ∗ ψY,Z ↑ ϕZ,X,Y
X ∗ (Z ∗ Y )

ϕX,Z,Y−→ (X ∗ Z) ∗ Y ψX,Z∗idY−→ (Z ∗X) ∗ Y

X ∗ (Y ∗ Z)
ϕX,Y,Z−→ (X ∗ Y ) ∗ Z ψX∗Y,Z−→ Z ∗ (X ∗ Y )

↓ idX ∗ ψY,Z ↑ ϕZ,X,Y

X ∗ (Z ∗ Y )
ϕX,Z,Y−→ (X ∗ Z) ∗ Y ψX,Z∗idY−→ (Z ∗X) ∗ Y

A pair (U, u) where U ∈ Obj(C) and an isomorphism
u : U → U ∗ U is called a unit object for C, ∗ if the
functor

X 7→ U ∗X : C → C

is the equivalence of categories.

Definition 3.2. A multiplicative category is a
collection (C, ∗, ϕ, ψ, U, u).

If there are some additional structures on category,
then it is usually assumed that product ∗ and other
elements of the collection are compatible with these
structures.

3.3. C-monoids or Multiplicative Objects.

Monoidal Categories and Monoids.

Comonoids

Let C = (C, ∗, ϕ, ψ, U, u) be a multiplicative category. A
multiplicative object in C or C-monoid is an object
M ∈ Obj(C) with multiplication µ : M ∗ M → M :
(m,m′) 7→ µ(m,m′) and a unit ε : U → M such that
the following axioms are faithful:

(1) Associativity: the following diagram is
commutative:

M ∗ (M ∗M)
ϕM,M,M−→ (M ∗M) ∗M

↓ idM ∗ µ ↓ µ ∗ idM
M ∗M µ−→ M

µ←− M ∗M

(2) Unit: the following diagram is commutative:

M → U ∗M ψU∗M→ M ∗ U
|| ↓ ε ∗ idM ↓ idM ∗ ε
M

µ→ M ∗M = M ∗M

Examples 3.1. Let R be a commutative ring.
The category R-mod of R-modules is a multiplicative
category under the tensor product ⊗R, where the unit
object is the left R-module R. Multiplicative objects in
the category are R-algebras with units.

Examples 3.2. A small multiplicative category C
is a multiplicative object of the multiplicative category
Sets//Obj(C).

Multiplicative structures may be described in
categories as monoids in a monoidal category.

A monoidal category (C,⊗,K, ϕ, . . . ) consists of:
⊗ : C × C → C, K ∈ ObC � the unit object,

and the functor-isomorphisms:

ϕA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)
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ψA : A ⊗ K → A, . . . , where ⊗ is symmetric, if there
exists a functor-isomorphism

θA,B : A⊗B → B ⊗A.

A monoid in a monoidal category (C,⊗,K, ϕ, . . . ) is
an object M endowed by a multiplication

µ : M ⊗M →M

and the unit morphism ε : K →M+Axioms.
A comonoid is a monoid in (Cop,⊗,K, ϕ, . . . ). In C,

we have the comultiplication

∆ : M →M ⊗M

the counit η : M → K+Axioms.
An action of a monoid M on A is defined by

α : M ⊗A→ A

+ Axioms.
A monoidal functor (a morphism of monoidal

categories) of two monoidal categories is defined as
F : (C,⊗,K)→ (C′,⊗′,K ′) if

F (A⊗B) ≈ F (A)⊗′ F (B)

and F (K) ≈ K ′.

Example 3.3. A monoidal category is a monoid
in the monoidal category (Cat,×,K) of categories with
Cartesian product. Here, K is a category with only one
object ∗ and only one morphism id∗.

Example 3.4. The category Symm with objects [n]
for n = 0, 1, . . . and morphisms

Symm([n], [m]) =
{
∅, if n 6= m,
Σn, if n = m,

where Σn is the group of permutations of (1, . . . , n), with
the multiplication

∗ : Symm× Symm→ Symm

such that [n] ∗ [m] ≈ [n + m − 1] with the following
identification of the inputs:

(1, . . . , n) ∗ (1, . . . ,m) = (1, . . . , n, 2, . . . ,m)

which explanes the action of ∗ on morphisms.

Example 3.5. Let (C,⊗,K) and (C′,⊗′,K ′) be two
monoidal catigories, F ∈ Ob(CC′) and F (K) = K ′.

Then on the category of such functors F , there is a
monoidal structure, and a monoid is defined by a functor
morphism

µA,B : F (A)⊗′ F (B)→ F (A⊗B)

with the natural axioms of associativity and unit.

Example 3.6. bialgebras and Dual construction
Algebras as monoids in k-bf vect, k-alg, Bialgebras

as comonoids in k-alg, k-bialg; double Categories as
monoids in the category of pairs of functors.

The author is grateful to A.T. Vlassov for helpful
discussions.
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ÌÅÒÎÄ ÄÎÄÀÒÊÎÂÈÕ ÑÒÐÓÊÒÓÐ
ÍÀ ÎÁ�'ÊÒÀÕ ÊÀÒÅÃÎÐIÉ ßÊ ÎÑÍÎÂÀ
ÒÅÎÐÅÒÈÊÎ-ÊÀÒÅÃÎÐIÉÍÎÃÎ ÀÍÀËIÇÓ Â ÔIÇÈÖI

Ñ. Ìîñêàëþê

Ð å ç þ ì å

Ìè ïåðåõîäèìî âiä îêðåìîãî îá'¹êòà äî ãðóïè éîãî àâòîìîð-
ôiçìiâ i äî i äî iíâàðiàíòiâ öi¹¨ ãðóïè, ïîòiì äî êàòåãîði¨ òàêèõ
îá'¹êòiâ i ôóíêòîðiâ íà êàòåãîði¨. Òàêèì ÷èíîì íà çìiíó òå-
îði¨ iíâàðiàíòiâ ïðèõîäèòü òåîðiÿ åêâiâàðiàíòíèõ âiäîáðàæåíü
é òîäi âèíèêà¹ ïðîáëåìà ÿê îïèñàòè ôóíêòîðè iç îäíî¨ êàòå-
ãîði¨ â iíøó. ßê ïèñàâ Ãåðìàí Âåéëü: �Ôåëiêñ Êëåéí çðîçóìiâ
i çàñòîñóâàâ ïîíÿòòÿ ãðóïè ÿê óíiâåðñàëüíèé ñòðóêòóðóþ÷èé
ïðèíöèï â àëãåáði, ãåîìåòði¨ òà àíàëiçi�. Ñüîãîäíi öÿ ìiñiÿ ãðóï
ïåðåõîäèòü äî êàòåãîðié.
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ÌÅÒÎÄ ÄÎÏÎËÍÈÒÅËÜÍÈÕ ÑÒÐÓÊÒÓÐ
ÍÀ ÎÁÚÅÊÒÀÕ ÊÀÒÅÃÎÐÈÉ ÊÀÊ ÎÑÍÎÂÀ
ÒÅÎÐÅÒÈÊÎ-ÊÀÒÅÃÎÐÈÉÍÎÃÎ ÀÍÀËÈÇÀ Â ÔÈÇÈÊÅ

Ñ. Ìîñêàëþê

Ð å ç þ ì å

Ìû ïåðåõîäèì îò îòäåëüíîãî îáúåêòà ê ãðóï-
ïå åãî àâòîìîðôèçìîâ è ê èíâàðèàíòàì ýòîé ãðóïïû, çà-

òåì ê êàòåãîðèè òàêèõ îáúåêòîâ è ôóíêòîðàì íà êàòåãî-
ðèè. Òàêèì îáðàçîì íà ñìåíó òåîðèè èíâàðèàíòîâ ïðèõî-
äèò òåîðèÿ ýêâèâàðèàíòíûõ îòîáðàæåíèé è òîãäà âîçíè-
êàåò ïðîáëåìà îïèñàíèÿ ôóíêòîðîâ èç îäíîé êàòåãîðèè â
äðóãóþ. Êàê îòìåòèë Ãåðìàí Âåéëü: �Ôåëèêñ Êëåéí îñîç-
íàë è ïðèìåíèë ïîíÿòèå ãðóïïû êàê óíèâåðñàëüíèé ñòðóê-
òóðèðóþùèé ïðèíöèï â àëãåáðå, ãåîìåòðèè è àíàëèçå�. Â
íàñòîÿùåå âðåìÿ ýòà ìèññèÿ ãðóïï ïåðåõîäèò ê êàòåãîðè-
ÿì.
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