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The expansions of a Green‘s function for the two Coulomb
center potential in Coulomb spheroidal functions are built, and
the expansion in associated Legendre polynomials for angular
Coulomb spheroidal functions is used. In the limit of small
intercenter distances, the analytic expressions for coefficients of
these expansions are obtained. The solutions of a degenerate
hypergeometric equation are used as a basis function system while
expanding regular and irregular Coulomb spheroidal functions
into series.

1. Introduction

The two Coulomb centers problem of the electron
motion in the field of two fixed charges Z; and
Zy located at the distance R from each other, can
be used as a helpful model in the study of many
molecular processes [1]. In this connection, rather useful
for applications becomes the Green’s function of the
following Schrodinger equation:

[ﬁ(f’) - E(R)] U(7 R) =

= [—%A—Zl/’rl—ZQ/TQ—E(R) ‘I/(’I::R):O, (1)

where r1, 9 are the distances from the electron to centers
1 and 2, vector 7 denotes the electron position and E(R)
— its energy; h=m =e = 1.

Equation (1) can be considered as the zero
approximation in perturbation theory for a molecular
system. Solutions of the inhomogeneous equation arising
in the first order of such a theory can be obtained
while using the Green’s function of the two Coulomb
center problem. In the theory of electronic structure
and spectra of molecular systems, this function plays
the same fundamental role as the one Coulomb center
Green’s function in the theory of atomic structure.

The most conventional methods of two center
Green’s functions construction are based mostly on
expanding these functions into Fourier series over full
basis sets of functions, arising at the separation of
variables in the Schrodinger equation (1) in prolate
spheroidal coordinates [1]. However, the convenient
expansions of the two center Green’s function over
partial waves have been constructed only in the separate
case of molecular hydrogen ion HJ [3], when the angular
functions of the problem coincide with the angular
functions of free motion (i.e., spheroidal harmonics, [4]).

In more general case of the two-center problem with
different charges of nuclei, the same approach demands
the angular functions of the problem to be expand in
spheroidal harmonics with a subsequent inversion of
obtained infinite matrices. The expansions of such a
type, leading to cumbersome expressions, are used for
studying the scattering by a finite dipole [5].

At the same time, the separation of variables
makes interesting the possibility of the two center
Green’s function expansion directly in the solutions of
ordinary differential equations, which are gained on the
separation of variables in (1) in the prolate spheroidal
coordinates [1].

Here, the expansions of the Green’s function of (1)
in angular Coulomb spheroidal functions (CSFs) are
built. While regular and irregular radial CSFs being
expanded into series (Section 3), the solutions ® and ¥
of a degenerate hypergeometric equation [15], providing
the required asymptotic behaviour of the CSFs at
small intercenter distances (R — 0), are used as basis
functions. These expansions are shown (Section 4) to
satisfy the “correspondence principle” stating that all
the formulae, obtained for the two-center problem in the
spheroidal coordinates, should change in the limit of the
united atom (i.e., at R — 0) into the known one-center
(spherical) analogues.

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.
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2. Initial Position

The Green’s function Gpg (?, ?/;R) of the ZjeZ,

problem is defined by the spectral expansion

v (7:R)w, (VR
e

where symbol > denotes the summarizing over discrete
J
and integration over continuum spectra of the operator

H in the prolate spheroidal coordinates

E=(ri+r)/R, 1<{< o0,
n=(ri—ry)/R, —-1<n<1,
p = arctan (y/z), 0< ¢ < 2. (3)

The eigenfunctions ¥; of three operators, which are
commute in pairs — Hamiltonian of the two-center
problem, projection of angular momentum L. to the
axis Z (directed from center 1 towards center 2), and
separation constant A can be represented as the product

[1]
\I’j (?a R) = \I,kqm (5177730’ R) = qum (p’a’ﬂ) x

_ eimgp
X, (p, @5 €) Eng (p; B31) Norh (4)
The radial CSF I, (p,;¢) and angular CSF
Emg (D, B;m) are the solutions of the system of ordinary
differential equations

q

d
{&le-vg|+[9-re-n+
.
+ 2pag — £2m—_1 }Hmk(p,asf) =0, ()
d d
{ala=ma]+ [ -ra-n +
-
+ 2pfn — 171177? }qu(p,ﬁ;n) =0 (6)

with the boundary conditions

im (62— 1) 7" Mt (p,05€) = 1,

£—1

lim IL, (pva; f) =0, (7)
£—o0

258

. 2 —m/Q,: . —
n_}grll_o (]- n ) “img (paﬂan) - 11 (8)

where )\52c and )\5,’17()1 are the separation constants, and
the standard designation has been used:

a = (Zo+ 2Z1) (—2E)71/2,
B = (Zs— 7)) (—2E) '/,
1
p = 5R(—2E)1/2'. (9)
The index j = {kgm} designates the set of quantum

numbers, where k£ and ¢ coincide with the numbers of
nodes of the corresponding CSF by the variables ¢ and
n and azimuthal quantum number m = 0,+1,+2....
Further we shall use the set of quantum numbers {nfm}:
n = k+q+m+1, ¢ = g+m, which coincides in the limit
of united atom with the spherical quantum numbers.
Normalization factor N; = Nigm(p, a,bd) is defined by
the following condition:

/ IIIlt’q’m’ (&m0 R) Usqm (&;m, 03 R)dr = Okk' Oqq' Omm »

RS
dr = —
TTR

The pair of one-dimensional boundary-value
problems (5) — (8) for the radial and angular CSF is
equivalent to the initial problem (1) under the condition

(&% —n?) dédndyp. (10)

)‘529(13, Oé) = )\5321(107 6) = )‘kqm-

Using (11) as the relation between p and E
(for the fixed parameters a and [ and the fixed
quantum numbers m, k, q) and taking into consideration
(9), one can derive the discrete energy spectrum of
the two Coulomb center problem ZieZy: Ej(R) =
Ekqm(RyzlaZQ)-

(11)

3. Green’s Function Expansion in Coulomb
Spheroidal Functions

It is well known that the Green’s function for (1) is
defined by the inhomogeneous equation

[—%A ~ Zifri ~ Zofrs ~ E(R)| G (7. 74 R) =
=5 (? - ?') ,

— —!
where 6(r — r

delta—function. Instead of performing the complicated

(12)

is the three-dimensional Dirac
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summation in (2), we use the standard algorithm
[9] of Green’s function construction of second-order
differential equations. Using this way, the important
analytic representations for the Green’s function of
Coulomb [2] and other one center model potentials [10]
have been obtained.

Since the azimuthal quantum number £ is not a good
quantum number in the non-central field, the solution of
the non-uniform equation (12) is sought in the form of
an expansion in a complete orthonormalized system of
prolate angular Coulomb spheroidal functions =,,¢(p, n)

[1]:
Ge (&n,0:8 10, ¢'|R) =

00 £
=Y D Gt (& &5 B) Eme (p:1) Sy (0,1 %

{=0 m=—{(

emlo=e) 13
SRS (13)
Eme(pyn) = None(®) 1Y _d" (p) Piry . (),

r=0
= 2(2m + r)!
N,oo(p) = ™ (p))? 14
(p) g( ") m!(2m + 2r + 1) (14)
Here, P]7', (1) are the associated Legendre polynomials,

d™(p) coefficients to be found. By substituting
expansion (13) into (12), having been written in the
prolate spheroidal coordinates (3), and separating the
angular variables 7 and ¢, we obtain a differential
equation for the radial part of the Green’s function

Gmf (5561; E)

e € -ig]

+ [Fm = (€ 1)+ 20 - ] x

4

XGml(fafl; E) = _Eé(f - é-l)’ (15)
where Ap,¢ denote the eigenvalues of the angular
problems, corresponding to the oblate CSF =,,, (p, 5; 1)
[1]. Thus, the function G(&,¢'; E) is the Green’s
function under one-dimensional radial motion and is
conventionally expressed by two linearly independent
solutions Hg%(p, &) = Hg%(p, a, Ame; €) and Hg}z(p, &) =
H(Q)

me

(P, &y A €) of the uniform equation (5).

ISSN 0508-1265. Yxp. pis. orcypn. 2002. T. 47, N 3

The solution H(l)

me(D, &) is regular at & — 1
and divergent at infinity, and Hﬁ%(p, &) is, contrary,
divergent at & — 1 and regular at infinity. Then,
according to the general theory of second-order linear
differential equations [9], the radial part of the Green’s

function G,¢(&,¢’; E) can be given by

e i) = 22 W@ e 6)
a pe2 -1)w [Hg%(p’ 5%{1%(1,’ f)]

Hereinafter, {< = min({,¢{'), & = max(£,{'), and

W]|...] is the Wronskian of the Hg%(p, £) and Hg%(p, §)
solutions.

Now we consider the radial uniform equation (5)
in more detail. We proceed, in this equation, to new
independent variables and to new sought functions
according to the formulae

m/2
~(+ E+1
Hgnz)(mi) = <§:F—1> Wt (P, €), (17)
r=p*1), 2p<Lzy<oo, 0Lz <o)
Hereinafter, the upper signs are related to ﬁf;}) (z4), and

(=)

the lower ones to fIm /

(z_). By transformations (17), Eq.

(5) is reduced to two separate equations for ﬁf;? (z+):

d (o d\_ _ F ()

p d
— | £2 1 —
+$i¢2p [ (m + )wida:i

1) — A ~
+ (% + 2a> xy F2s(s+ 1)] HS}) (x4)

=T, (22) 1) (22) + pQs (24) TE) (22) =0, (18)

The exact sense and aim of the partitioning of
differential operators performed here will be understood
at further consideration. But the idea can be explained in
a couple of words by the following physical speculations.
The operator Ts(z) formally coincides with the radial
Schrodinger operator in the spherical coordinates for
the Coulomb one center potential with the charge Z =
Z1 + Z5 and the orbital momentum s. When p tends
to zero, both Egs. (18) go over into one TsR(z) = 0
(0 < z < 00), whose two independent solutions are

the functions Rgl)(a:) and R (x), expressed directly in
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terms of the regular & and irregular ¥ solutions of a
degenerate hypergeometric equation [15]:

RV(z) = 2°e " ®(—a+ s + 1,25 + 2, 22), (19)
R (z) = 2°e U (—a + s + 1,25 + 2, 2z). (20)
The above speculations suggest the regular ﬁgf) (z1)

and the irregular ﬁﬁf) (z4) solutions of each of Eqgs.
(18) to be given as the following infinite sums:

ﬁgki) (Q?i) = ﬁgki) (a7 Amf:p; .I'j:) =
o0

=> " h{® (plon Ame) RV (2), (21)
s=0

025 (24) = T2 (@, Apey py 24) =

=Y " h{® (ploy, Ame) RO (z2), (22)

where the expansion coefficients hgi) and ﬁgi) are to
be determined. Having substituted these expansions
into the corresponding equations (18) and having used
the recurrent relations [16] for the basis functions

Rgl)(a:) and Rgz)(x), we obtain two infinite three-term

systems of linear equations for the coefficients hgi) =
S (0o Ame ), B = B (p o, A ):

+pah) + (By = Ame)hE) F prahlE) = 0, (23)
s=0,1,2.., B =o;
pashE) + (Bs = Am)BE) £ py:hE), =0, (24)

s=0,1,2.., B'Y =o.

To make the representation shorter, the following
notations are introduced:

2(s?—a?) (s+m)

@ = 5(28—1)(25+1)7 ﬂs:ﬂsZS(s—i-l),

vs=2(s+1)(s+1—m); (25)
o = 4(s —a)(s +m)
° 2s — 1 ’
~s:(s+a+1)(s—m+1)‘ (26)

25+ 3
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The recurrent systems (23) ((24)) determine the

coefficients hgi) (izgi)) to within arbitrary factors fixed
by the conditions

= I'(25+2) .
plE =2 T2 g 2 5h(F) = 1. 27
SZ; S 2T(s+1—aq) ’ g s (27)

The obtained recurrent relations (23), (24) do
not enable one to get explicit expressions for the
coefficients hgi) and ﬁgi). However, the procedure of
their calculation is considerably simplified due to a close
relationship between the three-term recurrent systems
and well-elaborated technique of chain (or continuous)
fractions. This circumstance essentially simplifies the
creation of effective algorithms for calculation of the
regular and irregular CSFs ﬁgf)(aci), ﬁgf)(aci).
The proposed two types of expansions (21) and (22),
not being asymptotic in the full sense, have better
convergence at small p.

The presented expansions (21), (22) should be
treated as Fourier series in the complete systems of
functions Rgl)(xi) and RgQ)(xi), respectively. The
coefficients hgi) and_ izgi) are the Fourier coefficients
of the functions Hgf) (z1), Hgf) (r+) and the
convergence is treated in the sense of the Fourier series
uniform convergence.

Now we calculate the value of the Wronskian
w [Hg% (p, &) ,Hg}z (p, f)] . Using the known asymptotic
expressions for the degenerate hypergeometric functions
at high values of the argument [15]

®(a,b,z) = %emm"_b [1 +0 (|$|71)] )

U (a,b,2) = 2 [1+ o) (|x|*1)] (28)

and taking into account the “normalization” conditions

(27) for the coefficients hgi) and izgi), one can readily

obtain
2p(6 = D)W 1.6, I (p, )] = —1. (29)

Expression (16) with the account of the Wronskian value
from equation (29) can now be given by

87 [zl \"?
m LE) = 22 [ ZFTE
G f(faé.v ) a <$ixlj:> X

Xﬁg}zi) (T+<) ﬁg}zi) (T+>) (30)

where the functions ﬁgf) (r1<) and ﬁgf) (z1s) are
still given by Eqgs. (21), (22).
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4. Limiting Values and Asymptotic
Expansions of the Two-Center Green’s
Function at Small Intercenter Distances

It seems interesting to consider the limiting expressions
from the obtained strict formulae (13), (30) at R — 0
and to compare them to the known results for the one-
center Green’s function [11]. It follows from (3) that, at
R — 0 and finite r, the prolate spheroidal coordinates go
over into the spherical ones r, 8, and ¢: £ — 2r/R, n —
cosf. If, in the equation for the oblate angular Coulomb
spheroidal functions Z,,,¢(p, ), the variable substitution
11 — cos @ is performed and the terms, changing into zero
at R — 0, are discarded, it goes over into the equation
for the associated Legendre polynomials P;” (cos ). This
means that the angular part of the solutions of the
Schrodinger equation (1) goes over in this limit into the
angular part of the one-center Coulomb problem in the
spherical coordinates. Hence, the limiting relations

eme \/(2e+1)(e—m)!x

9% R—0 47 (L + m)!

Eml(pa 77)

x P["(c0s 0)e'™? = Yin (8, ) ,

Ame(p) — £(L+1) (31)
R—0

are valid. By substituting this value for A, in (15),

carrying out the substitution of variable ¢ — 2r/R, and

keeping only the terms main in R, we obtain an equation

for the radial part of the Green’s function for the one

center Coulomb potential [11].

Now we investigate the limiting transitions in the
recurrent relations (23), (24) and in expansions (21),
(22) for the radial functions ﬁ%’f) (z1), (1 = 1,2). In
the R — 0 limit, the three-term recurrent relations (23),
(24) go over into the following one-term relations:

[s(s 4+ 1) — €(f + 1)]AE) = [s(s + 1) — £(£ + 1)]RF) = 0.

Hence, at R — 0 in each sum of (27), only one term with
s =/ differs from zero, therefore

2T (s +1— a)
@ _, 2PL+1-a)
e T TT@s 1)

st
R—0 5

(32)

S

ﬁ(i) — 2353[.
R—0

These formulae along with (19)—(22) and (31) show that,
in the R — 0 limit, the regular ﬁg’li) (z4) and irregular

ﬁg’li) (x4 ) solutions of equations (18) behave as follows:

rt+1-a)

r(L£)

R—0
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( Zr) (227«)‘
xexp | —— — ] X
[0 a

27
><<1><z+1—a,2£+2,7’">, (33)
4
24 _Zr\ (22r
122 ot £ 1) e (- 2) (22
27
X\P<£+1—a,2€+2,TT>. (34)

Finally, using the obtained formulae (31)—(34), we
can easily verify that the Green’s function (13), (30) goes
over, as expected, into the Green’s function of the atomic
potential [10, 11] at R — 0 :

!
G (7,7) = 3 0013 E)Yout (6, 0) Vs (0, ),

lym

AZT(U+1—a) (2Zr\' (22r5)\"
I_E - =
9u(r;1"s E) a T(20+2) ( a > a %

Z
Xexp |——(r< +7r P(l+1—a,204+2 22r< X
P (< >) 9 3
«a «o

XU <z+1—a,2é+2,2ZT>>. (35)
(0]

In many physical problems, whose examples are

considered in [1], the asymptotic of the Green’s function
!

Gg (?, T ;R) should be known at small values of
the intercenter distance. Hence, the necessity of the
asymptotic expansions of the =,,,(p, 1), Hgf) (z+), and
Hg’f) (z+) functions in a small parameter at the fixed
quantum numbers £ and m to be constructed arises. We
use an asymptotic method, proposed by Abramov and
Slavyanov [13], to search for such expansions.

We begin with the prolate angular Coulomb
spheroidal function =,,,¢ (p,n). Instead of the expansion
(14), we can use an expansion of the form

o0
Eme(pm)=e P Y AP, (n).

n=m—~{

(36)

The expansion coefficients d7* in (36) fulfill the three-
term recurrent relations [1]:

mt o L+n—m)(B+L+n)
dn=12p 2W+2m—1
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—d™ (L +n)(L+n+1) = AT+

ml

tn+m+1)(B-L-—n-1)
(204 2n + 3)

+dE 2p =0. (37)

We search for the separation constant /\5225 and the

expansion coefficients d™¢ in the form of asymptotic
series in the powers of a small parameter p?:

dpt = pl"l Y a7, do =1, (38)
=0
=3 ), v (39)

Jj=0

By substituting these expansions consequently into each
equation of system (31), starting from n = 0, and
equating the coefficients at the equal powers of p? to
zero, we obtain the recurrent relations to determine the

expansion coefficients [d7*] 5; and [)\52%] . The chain of
2j

equations, corresponding to n = 0, enables the [)\522]2]‘

values to be expressed in terms of coefficients [d! | e
The coefficients [dnmf]%,
consequently from the recurrent systems of equations,

corresponding to n = £1,2,.... The first six coefficients
of expansion (39) are given by

j > 0 are determined

Ao = £(£+1), (40)
my 2(Z2+Z—1+m2)

Pmele = 2p 20—1)2i+3)

12y B2(2 + £ — 3m?) )

L0+1)(20—-1)(20+3)°

(2 —m?)(8* — %) ((42 —m?)(5* - )
)

(my _
Pl = =2 ZA4r -1 0(40> 1)

[(6+ 1) = m?][B? — (£+1)%]

((+ 1)(20+ 1)(2C + 3)

=12 —m2p? — (£~ 1)2]> _

(20— 1)2(2( - 3)

[(e+1)? —m?)[B% — (£ +1)°]
(C+1)2 4 +1)2-1)

x«ﬂbﬂﬁ—mﬂﬁ—w+nﬂ
(L+1)(4(+1)2-1)

-2
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(22— m?)(5> ~ )

@e—-1n
[(£+2)* = m?*][6* — (£ +2)7]
20+ 3220+ 5) ) ‘ (42)

For the sake of space saving, the coefficient [)‘m]ﬁ given
in Appendix 1.

Unfortunately the numerical data for Coulomb
spheroidal functions are represented not so widely as for
spheroidal functions (see, for example, [4]). Therefore, we
have compared calculations by our asymptotic formula
(39) with numerical data from [12] for bound states of
Z1eZs systems. Thus, the value of p is taken relevant to
the energy of a bound state. Some results are presented
in Tables 1 and 2. Expansion (39) for the separation
constant )\1(72 as a function of p is valid in a broad range
of parameters. The results are better for larger m and /.

Now we proceed to consider the asymptotic
behaviour of the regular and irregular radial CSFs
ﬁgf) (z1), ﬁg;ﬁi) (r+) at small values of the p
parameter. For this purpose we can make use of
their expansions (21) and (22) in the solutions of the
degenerate hypergeometric equation.

Similarly to Eq. (38), the coefficients of expansions
(21), (22) can be sought in the form of power series:

(£) — sl ZOO )] 2
hs p Pt [hs ]ij -7’
p(E) — sl S 7 (£) 2]
hy” =p jE:o [hs ]ij”- (43)

T a ble 1. Separation constant for the ground state 1so,
Z1=1,Z2 =2

R P AL
Our results | [12]

0.2 0.290953 0.049553 0.049553
0.4 0.554405 0.175242 0.175244
0.6 0.794506 0.347491 0.347538
0.8 1.01837 0.546972 0.547375
1.0 1.23153 0.760295 0.762415
1.2 1.43806 0.976566 0.984442

T a b 1e 2. Separation constant for the state 2po, Z; =1,
Zo =2

R P A
Our results | [12]

0.2 0.150799 2.01311 2.01311
0.4 0.306268 2.05382 2.05382
0.6 0.469837 2.12594 2.12594
0.8 0.64160 2.23417 2.23415
1.0 0.818029 2.38169 2.38156
1.2 0.994205 2.56837 2.56895
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The coefficients of these series are found
consequently from the recurrent equations (23),
(24) after substitution of expansions (39) for
the eigenvalues )\fﬂ of the Sturm-Liouville
problem, which determines the prolate angular

Coulomb spheroidal functions =Z,,,(p,n). The explicit

] e
2j

represented

expressions  for [hgi)} rather

2j
cumbersome and will be
publication.

in another

APPENDIX 1

Expression for [/\522]6

A = (2 —m?)[m? — (1 — £)*(5¢—2)

Concluding, it is also worth to notice that an
approach to solving the perturbation-theory nonlinear
equations, related to the Timan—-Schwarz method
application, has been also discussed in the literature (See
e. g. [6, 7]). These approaches are formally equivalent,
but the Green’s function method possesses an advantage,
being known in various fields of physics and universal in
applications.

This work has been partially supported by INTAS
grant No 99 — 01326.

_[m® = (14 0)%][m? — (24 £)°)(7 + 5¢)

B2 —3)2e+1) > T

(14+0)3(1+20)(3+204(5+2¢) '

By = Ay [2(0 =12 = [1+20(£ - 1)]82 + ], Ba= Ay [1+0*2+ 0% —[5+2(3+0)]8% + 8],

(82 — ) (? — m?)(2¢ - 3)
203(1 4 26)[3 + 44(£ — 2)]

A6 = (Br + Ba)A]a +

21402 - A2)[8% — 2+ O?P[m? — (24 0]

+ A2 + A2

((IX2)? — 2607L4) —

(82 — (14 0?][(1 + 0)? — m?]
2(1 4+ 26)(3+20)(1 4 £)38

((IX2)% + 21 + ONa) +

201+ Hlm? — 3+ 0*[(1 + 0% = B2)[(2+ 0° - B3+ 6* — 5] _

(3 4 26)(5 + 26)(7 + 50)

2(8° — (1 - 08> - &]
Y30 —1)(20 — 5)(20 — 1)(50 — 2)

3(2 + 0)(7 + 20)(5 + 20)(7 + 50)

(54 B2[=5 + £(15(1 — £) + 46*)]+

+m2[—5 + B2(5 — 40) + £(15(1 — £) + 4£2)] +£][—29 + 62¢ + £2(—58 + 25( — 4@2)]) .

APPENDIX 2

Here,we give the coefficients of expansion (38) for the angular Coulomb spheroidal function (36):

_l+n+p

_A+n+m+1
T 2U+m -1’

T 24+ 2n+3

n 3

m 1+4—m . {—pB
[dl f]o _ QCL [d—f]o — %D—l,

1+¢
me) _ (LHE-m)@+l—m) me] _ (L1 B B)
[dz ]0 = 1+0(3+20) C1Co, [d72]0 = WB_QD_17

(14£-m)C1[-2(2+ £ —m)(2+£— B)C2D1 + [A7)]2(3 + 20)]

4], = 201+ 0)2(3 + 20) ’

[an{], = (6= B)Da[-2(-1+L—m)(-1+ L~ B)C-1 Dz + A)]2(1 — 20)]
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ITPO ACUMIITOTUYHI PO3B’A3KN
3AJTAYI IBOX KVJIOHIBCHKUX ITEHTPIB
HA MAJINX MIZKITEHTPOBUX BIJICTAHAX

B.FO. Jlazyp, M.B. Xoma, M.I. Kapbosareyn
PeszwowMme

Ilo6ynoBamo po3kiamu gBoneHTpoBOl (yHkmil I'pina 3a xysomis-
cbKuUMH cdepoiganbauMu dyHKOigMu. Jlng po3kiagiB KyTOBUX
KyJIOHIBCBKEX Cdepoifanpuux (DYHKNiH BUKOPUCTAHO NPHUETHAHI
nosminomu Jlexkanapa. B rpaHuii Manamx MiXKIEHTPOBUX BigcTa-
Hell OTPUMAHO AHAJITUYHI BUPA3U It KOeDIlieHTIB IuX PO3KJIa-
niB. ¢k 6GasucHi cucremMu npu PO3KJIAJAHHI PErYJISIPHUX Ta He-
PeryJaspHUX KYJOHIBCBKUX CdepoinanbHUX (YHKIIH B pPAAU BU-
KOPHCTAHO DPO3B’S3KH BHPOJYKEHOIO TIilepreoMeTpPUTHOrO DiBHSH-
HSl.

OB ACUMIITOTUYECKUX PEIMNIEHUAX
SAZTAYN IBYX KYVJIOHOBCKUX ITEHTPOB
HA MAJIBIX ME2KITEHTPOBBIX PACCTOAHUAX

B.FO. Jlasyp, M.B. Xoma, M.U. Kapbosaney
PeszwowMme

TlocTpoeHbl pas/ioKeHUsi ABYXIEHTPOBOU GyHkumu ['puHa 1o
KYJIOHOBCKUM ChepOuJaNbHbIM (GYHKIUAM. Jlna passioxkeHui
YIJIOBBIX KYJIOHOBCKHX C(EPOHJANBHBIX (DYHKIHHE HCIOIb30-
BaHBI TIPUCOEJUHEHHBIE TOJUHOMBI Jlexkauapa. Jljist Maabix Mex-
OEHTPOBBIX paCCTOﬂHI/Iﬁ TOJIYY€Hbl AHAJUTUYICCKUE BbIPDAXKCHUS
i Ko3pdUNMEHTOB 3TUX passioxkenuii. B kagecrse 6aszmc-
HBIX CHCTEM TIPHW PA3JIOXKEHUH PEryJISIDHBIX U HEPEryJsSpHBIX
KYJOHOBCKHX CGEPOUJAIBHBIX (QYHKIUHA B DPAAB  HUCIOIB30-
BAHBI PEIEHNSI BBIPOXKIEHHOTO THIIEPTEeOMETPUIECKOTO YpaBHe-
HHUA.
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