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The aim of this paper is to review our results on finite dimensional
irreducible representations of the nonstandard ¢-deformation
U, (son) of the universal enveloping algebra U(so(n)) of the Lie
algebra so(n) which does not coincide with the Drinfeld—Jimbo
quantum algebra U, (son). This algebra is related to algebras
of observables in quantum gravity and to algebraic geometry.
Irreducible finite dimensional representations of the algebra

U, (son) for ¢ not a root of unity and for ¢ a root of unity are given.

1. Introduction

Quantum orthogonal groups, quantum Lorentz groups,
and their corresponding quantized universal enveloping
algebras are of special interest for modern mathematics
and physics. M. Jimbo [1] and V. Drinfeld [2] defined ¢-
deformations (quantized universal enveloping algebras)
U,(g) for all simple complex Lie algebras g by means
of Cartan subalgebras and root subspaces (see also
[3] and [4]). However, these approaches do not give
a satisfactory presentation of the quantized algebra
Uyq(so(n)) from a viewpoint of some problems in physics
and mathematics. When considering finite dimensional
representations of the quantum groups SO, (n + 1) and
SO4(n,1), we are often interested in reducing them
onto the quantum subgroup SO4(n). This reduction
would give an analogue of the Gel’fand—Tsetlin basis for
those representations which are often used in physics.
However, the definitions of the quantized universal
enveloping algebras mentioned above do not allow the
inclusions Uy, (so(n + 1)) D Uy(so(n)) and Uy(so(n,1)) D
Uyq(so(n)). To be able to obtain such reductions, we have
to consider g-deformations of the universal enveloping
algebra U(so(n)), when so(n) is defined in terms of the
generators I 1 = Egr_1 — Ep_1, (where E;; is the
matrix with elements (E;s)r = 0;r05) rather than by
means of the Cartan subalgebra and root elements. To
construct such deformations, we have to deform trilinear
relations for elements Iy ;1 instead of Serre’s relations

(used in the case of the quantized universal enveloping
algebras of Drinfeld and Jimbo). As a result, we obtain
the associative algebra which will be denoted as U, (so,).

This g-deformation was first constructed in [5]. It
allows us to construct the reductions of Uj(so,,1) and
U, (s0n+1) onto U, (50, ). The g-deformed algebra U, (sop)
leads for n = 3 to the g-deformed algebra U, (so3) defined
by D. Fairlie [6]. The cyclically symmetric algebra,
similar to Fairlie’s one, was also considered somewhat
earlier by Odesskii [7]. The algebra Uj(so4) is a g¢-
deformation of the algebra U(so(4)). In the case of the
classical Lie algebra so(4) one has so(4) = so(3) & so(3),
while it is not a case for our g-deformation U, (sos) (see
[8]).-

In the classical case, the imbedding SO(n) C
SU(n) (and its infinitesimal analogue) is of great
importance for nuclear physics and in the theory of
Riemannian symmetric spaces. It is well known that,
in the framework of Drinfeld—Jimbo quantized universal
enveloping algebras and the corresponding quantum
groups, one cannot construct such embedding. The
algebra U, (so,,) allows one to define such an embedding
[9], that is, it is possible to define the embedding
U,(s0n) C Uy(sly), where U,(sly,) is the Drinfeld-Jimbo
quantized enveloping algebra.

As a disadvantage of the algebra U,(so,) we
have to mention the difficulties with Hopf algebra
structure. Nevertheless, U,(so,) turns out to be a
coideal in Uy(sly) (see [9]) and this fact allows us to
consider tensor products of finite dimensional irreducible
representations of Uy (so,) in many interesting cases (see
[10]).

Finite dimensional irreducible representations of
the algebra U,(so,) were constructed in [5]. The
formulas of action of the generators of U;(so,) upon
the basis (which is a g¢-analogue of the Gel’fand-
Tsetlin basis) are given there. A proof of these
formulas and some their corrections were given in [11].

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.
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REPRESENTATIONS OF THE ALGEBRA U‘;(son)

Finite dimensional irreducible representations described
in [5] and [11] are representations of the classical
type. They are g-deformations of the corresponding
irreducible representations of the Lie algebra so(n), that
is, they turn into representations of so(n) at
q— 1.

The algebra Uj(so,) has other classes of finite
dimensional irreducible representations which have no
classical analogue. These representations are singular at
the point ¢ = 1. They are described in [12]. A description
of these representations for the algebra Uy (so3) is given
in [13]. A classification of irreducible *-representations
of real forms of the algebra U,(so3) is given in [14].

Irreducible representations of U,(so,), when ¢ is
a root of unity were considered in [15]. In this
case, all irreducible representations of U,(so,) are
finite dimensional. In order to prove the corresponding
theorem, an analogue of the Poincaré-Birkhoff-Witt
theorem for Uj(so,) and the description of central
elements of this algebra for ¢ a root of unity (given
in [16]) were used. For construction of irreducible
representations of Uj(so,) for ¢ a root of unity, the
method of D. Arnaudon and A. Chakrabarti [17]
for construction of irreducible representations of the
quantum algebra U,(sl,,) when ¢ is a root of unity was
applied.

The aim of this paper is to give a review of the results
on finite dimensional irreducible representations of the
algebra Uy (so,) obtained in Bogolyubov Institute for
Theoretical Physics (Kiev).

The algebra Uj(so,) is interesting because of its
applications in quantum gravity [18-20] and in the
theory of harmonics on a quantum vector space (see [21]
and [22]).

2. The g-deformed Algebra U, (so,)

The origin of existing a g¢-deformation of the
universal enveloping algebra U (so(n)), different from the
Drinfeld—Jimbo quantized universal enveloping algebra
U,(soy,), consists in the following. The Lie algebra so(n)
has two structures:

(a) The structure related to existing a Cartan
subalgebra and root elements in so(n). A quantization
of this structure leads to the Drinfeld-Jimbo quantized
universal enveloping algebra U, (soy,).

(b) The structure related to realization of so(n)
by skew-symmetric matrices. In so(n), there exists a
basis consisting of the matrices I;;, i > j, defined as
I;j = E;; — Ej;, where Ej; is the matrix with entries
(Eij)rs = 0ir0j5. These matrices are not root elements.
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Using structure (b), we may say that the universal
enveloping algebra U(so(n)) is generated by the elements
Iij, © > j. But in order to generate the universal
enveloping algebra U(so(n)), it is enough to take only
the elements I»q, Isa,- -+, I p—1. It is a minimal set of
elements necessary for generating the algebra U(so(n)).
These elements satisfy the relations

2 2

Loy Livri — 2L i1 Liva idiion + Liva iy = — L,
2 2

Liioadiyy s — 2Liv i Livr i + Iy i liion = —Lijiea,s

Ii,i—llj,j—l — Ij,j—lli,i—l =0 for |Z — ]| > 1.
The following theorem is true [23] for the algebra
U(so(n)): The wuniversal enveloping algebra U(so(n))
is isomorphic to the complex associative algebra
(with a unit element) generated by the elements Ioy,
Iso, -+, Ip n—1 satisfying the above relations.

We make the g-deformation of these relations by
deforming the integer 2 in these relations as

22 =("-q¢/le-q¢ ) =q+q "

As a result, we obtain the complex associative algebra
(with a unit element) generated by the elements Iog,

Izo, - -+, I n—1 satisfying the relations

Lo L — (q+ ¢ D hicaLipniliio + Lig i 1Dy =

= —Li4+1,4, (1)

Lol — (0 + ¢ Dlipidiima Lipr + I Lo =

=—I;1, (2)

I,"Z',l_[j’jfl — Ij,jfl-[i,ifl =0 for |Z — ]| > 1. (3)
This algebra was introduced by us in [5] and is denoted
by U, (s0n)-

The analogue of the elements I;;,4 > j, can be
introduced into U, (so,) (see [24] and [25]). In order to
give them, we use the notation Iy ;1 = I,j:k_l = I,;k_l.
Then, for k£ > [+ 1, we define recursively

L= Ty gs Ingalg =
= ¢ PIaalias — ¢ P e D, (4)
Ik_l::[IH-l,laIk,l—i—l]q*l:q_1/21l+1,l1k,l+1_q1/21k,l+lll+1,l

The elements I,j;, k > [, satisfy the commutation
relations

[Il—z’ I]ji]q = Ilj—n’

[IIZS’ I]j_n]q = I+

ins

(L5 Ihle =15 (5)
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for k>1>n,

(L, IF]=0 for k>1>n>r and k>n>7r>1,(6)

kl>“nr

[, I = MIELE — ) for

kl> “nr

k>n>101>r. (7)

where A = ¢ — ¢~ !. For I;, k > [, the commutation
relations are obtained from these relations by replacing
I,:? by I, and ¢ by ¢~

The algebra U,(so,) can be defined as a unital
associative algebra generated by I,j}, 1 <1<k <n,
satisfying relations (5)—(7). In fact, using relations (4)
we can reduce relations (5)—(7) to relations (1)—(3) for
Ioy, I39, -, Inpn-1.

The Poincaré-Birkhoff-Witt theorem for the algebra
U,(so,) can be formulated as follows (a proof of this
theorem is given in [15]): The elements

4 M21 y4 M31 + Mni1 y4 M32 74 M42 -+ Mn2
B R A £ Vi 5 T X
+ Mp n—1 _
XIn,nfl ) mi; = 0,1,2,---, (8)

form a basis of the algebra U,(so,). This assertion is
true if Ii"JT are replaced by the corresponding elements

Il;

Example 1. Let us consider the case of the algebra
Ué(503). It is generated by two elements Iy; and Is9
satisfying the relations

LI — (q—q N Izoloy + IsoI3) = — Iz, 9)

i3y — (q+ ¢ Do I + I3,y = — Doy (10)
Introducing the element I3; = q1/2121132 — q_1/2132121,
we have the relations

[I21,I32]q = Is1, [I32,I31)g = Io1, [I31,121]q = I32, (11)

where the g-commutator [-,-]; is defined as [A4,B], =
q'/?AB — q~'/2BA. The algebra Uy (so03) can be defined
as the associative algebra generated by the elements Ioy,
I5o, I3 satisfying relations (11).

Note that the algebra Uj(soz) has a big
automorphism group. In fact, it is seen from (9) and (10)
that these relations are not changed if we permute I
and I32. From relations (11), we see that the set of these
relations are not changed under cyclical permutation of
I51, I, I31. The change of a sign at Is; or at I3s also
does not change relations (9) and (10). Generating a
group by these automorphisms, we may find that they
generate the group isomorphic to the modular group
SL(2,Z). That is why the algebra U, (soz) is interesting
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for algebraic topology and algebraic geometry (see [26]—
[28]).

Example 2. Let us consider the case of the algebra
Ué(s04). It is generated by I»1, I3z, and I43. We create
the elements

I3y = [Is1, I32]q, Iso = [I32, I43]q, Iay = [Io1, Iu2]q. (12)

Then the elements I;;, i > j, satisfy the relations

I21,130]qg = Is1, [I32,131]qg = Io1, [I31,121]q = I32.

32, Iu3)q = Lo, [Iuz, Iu2]q = Is2, [la2,I32]q = Ius.

31, 143)g = Ln1, [Ius, Iuilqg = Is1, [Iu1,Is1]q = Lus.

21, 1u2)qg = Ina, [la2,Iu1lqg = Ion, [Ian,Ion1]q = Luo.

[I21,143] =0,  [I32,141] =0,

[I12, I31] = (¢ — ¢ V) (Iz1 Luz — I3a141).

At ¢ = 1, these relations define just the Lie algebra
50(4). Each of the sets (121,132,131), (132,143,142),
(131,143,141), (121,142,141) determines a subalgebra
isomorphic to U, (s03).

3. Irreducible Finite Dimensional
Representations

The algebra U, (so,) has two types of irreducible finite
dimensional representations:

(a) representations of the classical type;

(b) representations of the nonclassical type.

Irreducible  representations of the classical
type are g¢-deformations of the irreducible finite
dimensional representations of the Lie algebra so(n).
So, there is a one-to-one correspondence between
irreducible representations of the classical type of
the algebra U, (so,) and irreducible finite dimensional
representations of so(n). Moreover, the formulas for
representations of the classical type of Uy (so,) turn into
the corresponding formulas for the representations of
Lie algebra so(n) at ¢ — 1.

There exists no classical analogue for representations
of the nonclassical type. Operators T'(a), a € U,(son),
have singularities at ¢ = 1. Let us describe irreducible
finite dimensional representations of both types.
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4. Irreducible Representations of the Classical
Types

In this section, we describe (in the framework of
the g-analogue of the Gel’fand-Tsetlin formalism)
irreducible finite dimensional representations of the
algebras Uy (so,), n > 3, which are g-deformations of
the finite dimensional irreducible representations of the
Lie algebra so(n). They are given by sets m,, of |n/2|
numbers m1 n, M2 n, -, M| 2|,n (here [n/2] denotes the
integral part of n/2) which are all integral or all half-
integral and satisfy the dominance conditions

M12p+1 2> M22pt1 > oo > Myp2pt1 > 0,

Mi,2p > M22p > oo > Myp—1,2p > |y 2y

for n = 2p + 1 and n = 2p, respectively.
These representations are denoted by Ty,,. We take
the g¢-analogue of the Gel’fand-Tsetlin basis in the
representation space, which is obtained by successive
reduction of the representation Ty,, to the subalgebras
Uy(50n-1), Uy(s0n-2), -+, Uy(s03), Uy(soz) := U(soz).
As in the classical case, its elements are labelled by the

Gel’fand-Tsetlin tableaux

m,
m, 1

COER S

mo

(13)

where the components of mj and my_; satisfy the

“betweenness” conditions

M1,2p41 = M12p > M2 2p41 > M22p > e >
> Mp2p+1 > mMp,2p > —Mp2p+1,

Mi2p > M12p 12> M22p > Ma2p 1 > e 2
> Mp_1,2p—1 > |Mp.2p|-

The basis element defined by the tableau {¢,} is denoted

as [{&,}) or simply as [&,).

It is convenient to introduce the so-called -

coordinates

liopt1 = mjopr1 +p—j+ 1, ljop =mjop+p—J,

for the numbers m; . In particular, l13 = mi3 + 1
and l172 = mip2. The operator Tm" (12p+172p) of the

representation Ty, of U, (so,) acts upon Gel'fand—
Tsetlin basis elements, labelled by (13), by the formula

p A] i
T (s a)len) = 3 &)

+iy_
> T g €0)

—lj2p
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6’”)21) )

qli-2v +q_lJ 2p |(£n)2_1’]> (14)

—Z

and the operator Tm, (I>p2p—1) of the representation
T, acts as

1 .
N B%p 1(611)
T, (I2p,2p-1)I&n) = Z < [20.5p—1 — 1[I} 2p- 1]|(fn)2p »
2Bl (@) .
- ];1 [21]‘,21)71 - 1][lj,2p71 _ 1] |(£n)2p_1>—|—
+i Cap-1(8n)[6n)- 1)

In these formulas, (fn)kij means tableau (13) in which
the j-th component m; in my, is replaced by m;j = 1.
The coefficients A2p, B2p 1> Cop_q in (14) and (15) are
given by the expressions

AL (&) = [l [li2p1 + Liopllliops1 — Lj2p — 1]
o 152l 2p + Li2pl[li 2p — 1 2p)]

_ 1/2
y 122 [li2p—1 + Liopllliop—1 — Lij2p — 1] (16)
nyéj [li,2p + lj,2p + 1][11',21) - lj,2p - 1] ’

Hf 1[lz 2 t 13,210 1][lz 2p — ly,2p—1]
Hz;&] [lz 2p-1+1j,2p- 1][lz 2p—17 lJ’Qil?*l]

ng—l(fn) = (

— 1/2

% Hf#jl [li2p—1 +ij, ap—1]lli2p—1 _lj,2pfl] (17)
T2, i 2p—1+1.2p—1 = [l 2p—1 1 2p-1—1] ’

Hf: 1 [ls 21)] Hg;i[ls,%fﬂ

H [ s 21)*1][18,21)*1 - 1]

where numbers in square brackets mean g¢-numbers
defined by

Cop-1(&n) = (18)

¢“—q"
[a] :== — 1
q9—q
In particular,
T, (13,2)|£n> =

1

= qm1‘2 +q_m1,2

(\/[1173+m1,2][11,3—m1,2—1]|(€n)§1>—

—\/[11,3 +mip = 1l = maa)l(En)y ),
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Tm, (I2,1)[&n) = i[m1 2]|€n),

It is seen from formula (28) that the coefficient Cs,—4
vanishes if m, 2, =1, 2, = 0.

A proof of the fact that formulas (14)-(18) indeed
determine a representation of U, (so,) is given in [11].

Theorem 1. The representations T, are
irreducible. The representations Ty, and Ty are
pairwise nonequivalent for m, # m) .

Example 3. Irreducible representations of the
classical type of the algebra U (so3) are given by a
nonnegative integral or half-integral number [ and act on
vector spaces ‘H; with a basis |l,m), m = -1, =l+1,---, L.
We denote these representations by 7;. For the operators
Ti(I>) and T;(I32), we have the formulas Tj(I21)l,m) =
ifm]|l,m) and
T’l (Igg)l, ’ITL>

(V[I—=m][l+m~+1]|l, m+1)—

—\/[l +m]ll = m+ 1]l,m — 1)),

qm+q

where [a] denotes a g-number.

5. Irreducible Representations of the
Nonclassical Types

Irreducible finite dimensional representations of the
nonclassical type are given by sets € := (€2, €3, -, €p),
€, = £1, and by sets m, consisting of [n/2| half-
integral numbers m;y ,,,ma 0, -+, M|p/2] , that satisfy
the dominance conditions

M12p+1 2> M22pt1 > oo > Myp2pt1 > 1/25

M12p > M2op 2> oo 2 My_1,2p > My 2p > 1/2

for n = 2p+ 1 and n = 2p, respectively. These
representations are denoted by T m,,-

For a basis in the representation space, we use the
analogue of the basis of the previous section. Its elements

are labelled by tableaux

m,
my,_1

fy =4 ™,

ms-

(19)

where the components of mj; and myj_; satisfy the
“betweenness” conditions

M1 2pt1 > M12p > M2 2p41 > M22p > oon >

> Mpopt1 = Mp2p > 1/2,
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Mi2p 2 Mi12p—1 2 M2,2p > M2,2p—1 > oo 2
> Myp-1,2p-1 > Myp2p.

The basis element defined by the tableau {¢,, } is denoted
as |n).

As in the previous section,
introduce the l-coordinates

it is convenient to

Liopt1 = mjopt1 +p—j+ 1, ljop=mjo+p—J.

The operator Te m, (I2p+1,2p) of the representation Te m,,
of Uy(sop,) acts upon our basis elements, labelled by (19),
by the formulas

€2p+1

T, (I2p+1,2p)|€n) = Oy, 5,172 szp(fnﬂfn)

ARy e A () —j
+Z 5 I<fn>$p>—2#ufﬂ>2p>,

= q J.2p —q lj2p
(20)
where the summation in the last sum must be performed

from 1 to p — 1 if m,5, = 1/2, and the operator
T, (I2p2p—1) of the representation T, acts as

Te (Iopp 1)) Z Phpoa&) et
A j=1 21] 2p—1— ][lj,Qp 1+ et
= BL ()5 _

< [2l.2p-1 — 1[lj2p—1 — 14 (En)ap-r)+
+€2pé2p71(£n)|€n>a (21)

where [a]l+ = (¢ + ¢ *)/(¢ — ¢ '). In these formulas,
(fn)kij means tableau (19) in which the j-th component
m; r in my, is replaced by m; ; = 1. The matrix elements
A}, and By,
and (15

, are given by the same formulas as in (14)
) (that is, by formulas (16) and (17)) and

Hg 1[ls 2p]+ Hi;} [ls,2p—2]+

H [ s 2p—1]+[ls,2p—1 - 1]+
T2 ligprs — SITTE (li2p—1 — 3]

122, (i + 3]lli2p — 2]

For the operators Tem, (I32) and Tem,(I21), we
have

Te,mn (-[3,2)|£n> =

Cop-1(6n) =

D2P(§n) =

ISSN 0503-1265. Yxp. ¢pis. ocypn. 2002. T. 47, N 3
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1

:W(\/[1173+m1,2][l1,3—m1,2 —1(&n)3 ") -

—\/[11,3 +mio = 1l —mip)|(€n)y ')

: 1
lf m1’2 ;é 3

1

Tem, (13,2)|€n>=W(63[11,3—1/2]|(€n)>+

+/lhs + /2005~ 3/201E)F)

lf m1’2 = %, and Te,mn (12,1)|£n> = 62[m1’2]+|§n).

The fact that the above operators Tem, (Ix k—1)
satisfy the defining relations (1)—(3) of the algebra
U,(son) is proved [12] in the following way. We take
formulas (15)—(18) for the classical type representations
Tm, of U,(so,) with half-integral m; , and replace there
every mjopt1 DY mjopt1 — im/2h, every mjop, § # P,
by mj.op —im/2h and my, 2y by My 2p — €264 - - - €2pim /2,
where each €5 is equal to +1 or —1 and h is defined by
q = e". Repeating almost word by word the reasoning
of paper [11], we prove that the operators given by
formulas (15)—(18) satisfy the defining relations (1)—(3)
of the algebra Uy (so,) after this replacement. Therefore,
these operators determine a representation of U, (son).
We denote this representation by T}, . After a 51mp1e
rescaling, the operators T}, (I x—1) take the form

P Aj ”
Tha, (Ips1,2p)|én) = D %Kfn) -
s q'i2r —q Lj,2p
—Z]%ﬁjb@m»
p—1
2p 1(£n)
T (I2P72p 1 |€n ]:Zl 21] ap_1— ][lj,Qp—1]+|(£n)2p 1)

p—1

|(&n)31 )+

B%p 1((5”)271.)771)
j=1 [2l]‘72p*1 - 1][1]',21)71 - ].]+

+€2p6’2p—1 (&) |£n> )

where A2p, B _, and Cy, ; are such as in formulas (20)
and (21). The representations Ty, are reducible. We
decompose these representations into subrepresentations
in the following way. Wefixp (p=1,2,---, [(n—1)/2])

and decompose the space H of the representation T},

ISSN 0503-1265. Yxp. ¢pis. orcypn. 2002. T. 47, N 3

into a direct sum of two subspaces He,,,,, €2p41 = %1,
spanned by the basis vectors

|£n>€2p+1 = |€n> -

respectively, where [£) is obtained from |£,) by the
replacement of mp o, by —my2p. A direct verification
shows that two subspaces H.,,,, are invariant with
respect to all the operators Ty, (I x-1). Now we take
the subspaces H,,,, and repeat the same procedure for
some s, s # p, and decompose each of these subspaces
into two invariant subspaces. Continuing this procedure
further, we decompose the representation space H
into a direct sum of 2L("~1/2] invariant subspaces.
The operators Ty, (Irr-1) act upon these subspaces
according to formulas (20) and (21). We denote the
corresponding subrepresentations on these subspaces by
Te,m, . The above reasoning shows that the operators
Tem, (Ir,1—1) satisfy the defining relations (1)—(3) of the
algebra U, (sop).

€apt1l&n)s  Mpap > 1/2,

Theorem 2. The representations T.m, are
irreducible. The representations Te, and Te o are
m, ,m/,
pairwise nonequivalent for (e,my) # (¢/,m.). For any
admissable (€,m,) and m!, the representations T, m,
and Ty are pairwise nonequivalent.

The algebra U; (so,) has non-trivial one-dimensional

representations. They are special cases of the
representations of the nonclassical type. They are
described as follows.
Let ¢ := (e2,€3,---,€,), € = =£1, and let
_ _ (11 1
m, = (m17n’m27n7"'am[n/2j,n) - (5557"'a§)'

Then the corresponding representations 7T m, are one-
dimensional and are given by the formulas

Te,mn (Ik+1,k)|§n> = €k+1(q1/2 _ q—1/2)—1

Thus, to every € = (e2,€3, - -,€), € = =1,

there corresponds a one-dimensional representation of
!

U, (s0n).

Example 4. Let us describe irreducible
representations of the nonclassical type of the algebra
U,(s03) These representations are given by numbers
m, €1, €2, where m is a positive half-integer and €1, ey =
+1. We replace m by the number ¥ = m + 1/2.
Then k runs over positive integers. The corresponding
representation of U/(soz) is denoted by R;»“*. The
basis vectors of the representation space are |r),
r =1,2,---,k. For the operators of the representation
R;“*, we have

qr71/2 + q7r+1/2

R (Ia)|r) = e |7,

q—q!
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Ry (I)1) = — (€lklal1) +ilk = 1]12)).

1
qi2 —g1/2
1

Ry (Is2)|r) = 12 — g-r+1/2

(i[k = rlglr + 1)+

+i[k + 7 — 1]4|r — 1)).

It is easy to see from these formulas that
Tr R;*(I»1) # 0 and Tr R;"*(I32) # 0. Note that,
for representations of the classical type, the elements Iy
and I3, correspond to operators with vanishing trace.

6. Finite Dimensionality of Representations
for g a Root of Unity

Everywhere below in this and the following sections, we
assume that ¢ is a root of unity. Moreover, we consider
that ¢¥ =1 and k is an odd integer.

We shall need an information on the center of the
algebra U; (so,,). Central elements of the algebra Uy (soy,)
for any value of ¢ are described in [24] and [29]. They
are given in the form of homogeneous polynomials of
elements of U, (so,). If ¢ is a root of unity, then there
exist additional central elements of U,(so,) which are
given by the following theorem proved in [16].

Theorem 3. Let ¢* =1 for k € N and ¢/ # 1 for
0 < j < k. Then all the elements
0

k—j 1( i )2jI+k—2j
e J ) k=j\q—q~t) "

for v > 1, where [(k—1)/2] is the integral part of the
number (k —1)/2, belong to the center of U,(soy,).

It is well known that a Drinfeld-Jimbo algebra U, (g)
for q a root of unity (¢ = 1) is a finite dimensional
vector space over the center of U, (g). The same assertion
is true for the algebra Uj(so,). In fact, any element

o)1) =

L(k—1)/2] <

(IZ-J;- )%, s > k, can be reduced to a linear combination
of (IX)", r < k, with coefficients from the center
C of Ui(son). Now our assertion follows from this

sentence and from the Poincaré—Birkhoff-Witt theorem
for U (son).

Theorem 4. If q is a root of wunity, then
any irreducible representation of Uj(so,) is finite
dimensional.

This theorem is proved in the following way.
Let ¢ be a root of unity, that is, ¢* = 1. Let
T be an irreducible representation of U, (so,) on a
vector space V. Then T maps central elements into
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scalar operators. Since the linear space U,(son) is
finite dimensional over the center C with the basis

ma1 m31 My, n—1
B e , mij < k, we have T'(a) =
m m Map,n—
Zmij<k c{ml.j}T(I;'1 21];'1 S -I;l"n_l Y) for any

a € Uy(son), where ¢y, ;) are numerical coefficients.
Hence, if v is a nonzero vector of the representation
space V, then T'(U,(s0,))v = V since T is an irreducible
representation. Since T'(a) is of the above form for any
a € U(so,), V is finite dimensional. Theorem 4 is
proved.

It follows from this proof that there exists a fixed
positive integer r such that the dimension of any
irreducible representation of U, (so,) at ¢ a root of unity
does not exceed r. Of course, the number r depends on
k.

7. Irreducible Representations at ¢ a Root of
Unity

Let us consider irreducible representations of U, (so,, ) for
q a root of unity (¢¥ = 1 and k is the smallest positive
integer with this property). We also assume that k is
odd. If £ would be even, then almost all below reasoning
is true, if k is replaced by k' = k/2 (as in the case
of irreducible representations of the quantum algebra
U,(sly) for ¢ a root of unity in [4], chapter 3).

There are many series of irreducible representations
of Uj(so,) in this case. We describe the main series
of such representations. We fix complex numbers
M1 0, M2.05 -0y M| ny2).n (here |n/2] denotes the integral
part of n/2) and ¢;5, hyj, j = 2,3,---,n — 1,40 =
1,2,---,]j/2] such that none of the numbers

Min, Nij, hij — hsj, hij — hgj+1, hij + hj,
hij + hs,jila hb,n—l — Mgn, hb,n—l + Msn

belongs to $Z. (We also suppose that ¢;; # 0.) The set
of these numbers will be denoted by w:

w = {m’nac’n—lahn—la'"ac27h2}a

where m,, is the set of numbers my ,, M2 p, e, M2 05
and, c¢; and h; are the sets of numbers ¢;;, i =
1,2,---,14/2], and hy;, i =1,2,---,|j/2], respectively.
(Thus, w contains r = dimso, complex numbers.) Let
V' be a complex vector space with a basis labelled by the
tableaux

m,,
YRS

mso

(22)
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where the set of numbers m,, consists of |n/2| numbers
M1 s M2, ", M[n/2| n given above, and, for each s =
2,3,---,n—1, my is a set of numbers my 5, -+, m |52 s
and each m; ¢ runs independently the values h; s, hi s +

“ his + k — 1. Thus, dimV coincides with k",
where N is the number of positive roots of so(n). It
is convenient to use the so-called l-coordinates for the
numbers m; s, s = 2,3, -, n:

liopt1 =Mjopt1 +p—J+ 1, ljop=mjop+p—J.

To the set of numbers w, there corresponds the
irreducible finite dimensional representation T, of the
algebra U (son). The operators T, (lapy1,2p) of the
representation 7,, act upon the basis elements, labelled
by (32), by the formula

A3, (&)

N
T (Izp+1,2p)[6n) = Z 2 iz 4 g Lz + q iz ()25 ) —

SR H(Chr) Ry

f Js 2pq 32 4 q—lJ 2p (23)
Jj=

and the operators T,,(I>p 2p—1) of the representation Ty,
act as

p—1 B ;
To(Iop2p—1)[&n) = Z[CJ 201831 (&)

2lJ2p 1= ][]217*1]

|(€n)35-1)—

) ~ . »
_p o1 cj,;,?ple%p—l((fn)Qby—l) (¢ )—j )+
S 2y 1 = lljap 1 — 1 T

+iCop-1(&n) [€n),

where numbers in square brackets mean g-numbers. In
these formulas, (£,)f7 means tableau (22), in which
Jj-th component m; s in m; is replaced by m;, + 1. If
mjs+1=hjs+k (resp. mj s —1 = h; s — 1), then we
set mj s+ 1= h]s (resp. mjs —1 = hj, +k—1). The
coefficients A2p, BQP 1> Cap_1 in (23) and (24) are given
by the expressions

i e = (Mizllioptr + bapllliapn —liap=1]
" Hf;éj [li2p + Lj,2p][li2p — Lji2p]

(24)

X

Pl Lioglliog 1=Liop—=1] )/
Hi:1 [ i2p—1+ J72p][ 4,2p—17%5,2p ]
j2p — 1] ’

15 slli2p + 1jop + [l 2p — 1

Hf 1[li,2p + lJ%?pfl][li,?p - lJ',?pfl]
T122; iap—1+L2p—1]lli2p—1—Lj 2p—1]]

ng—l (én) = <
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b1 1/2
Hi:l [li,2p72 + lj72p71][li,2p72 - l] 2p 1]
12 liop—1+ljop —Ulliop—1—ljop1—1] )

Hi’:l [ls,2p] Hf;i [ls,2p—2]

Cop-1(&n) = .
2p—1(&n) Hf;i [s,2p—1][ls,2p—1 — 1]

The fact that the operators T,,(I;;—1), given above,
satisfy the defining relations (1)—(3) is proved in the
same way as in the case of irreducible representations
of U,(son,) when ¢ is not a root of unity (see
[15]).

As in the case of finite dimensional irreducible
representations of the Lie algebra so,, the form of the
basis elements of the above representation space V
and the formulas for the operators T, (I;;—1) allow us
to decompose the restriction of the representation 7,
w = {my,ch_1,hy_1, -+, c2,ho}, to the subalgebra
Ué(son,l). We have

L., U!I(SOn—l): ®wn_1 Lonoss

where Wn—1 = {mn—la Cn-2, hn—27 T
runs over the vectors

Co, hg} and my,_1

(hin—1 + @1, ho 1+ as, -, hsno1 + as),

s=|(n-1)/2], a; =0,1,2,---, k-1,

and c; and h; are such as in w.

Theorem 5 [15]. Representations T, with the
domain of values of representation parameters, as
described above, are irreducible.

There are equivalence relations in the set of
irreducible representations 7T,,. In order to extract a
subset of pairwise nonequivalent representations from
the entire set, we introduce some domains on the
complex plane. The set
D={zeC||Rex| < k/4or Rex = —k/4,

Imz <0or Rex =k/4, Imz > 0}

is a maximal subset of C such that, for all z,y € D,
x # y, we have [z] # [y]. The set

*=—{reC|0<Rex<k/4dorRex =0,

Imz >0or Rex = k/4, Imz > 0}
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is a maximal subset of C such that, for all z,y €
D*, z # y, we have [z] # +[y]. We need also the
sets

Dp={ze€C||Rex| <1/40r Rex = —1/4,
Imz <0or Rex =1/4, Imz > 0},

Df ={r€C|0<Rex<1/40r Rex =0,
Imz >0 or Rexz =1/4, Imz > 0}.

We introduce an ordering in the set D* (resp. Di)
as follows: we say that = > vy, z,y € D% (resp.,
T,y € D,jf) if either Rex > Rewy or both Rexz = Rey
and Imz > Imy.

We say that the set of complex numbers 1y, =

(l1,2ps12.2ps -5 lpop) 18 dominant if 1 2p, loop, -,
lp—1,2p € Di, lpop € D, and liop > loop > -+ >
lp-12p > 1%y, where I* 5 = 5, if l,5, € D* and
Lpop = —lp2p i lp2p & D=,

The notion of dominance for the set hy, =
(h1,2ps h2,2p, - hpop) € CP is introduced by the
replacements l; 5, — hisp, D — Dy and D¥ — Dif
in the previous definition.

We say that the set of complex numbers 1y, ; =
(11’2p+1,12’2p+1,"',lp72p+1) is  dominant if 11’2p+1,
12’2p+1, .- ',lp72p+1 € D* and l172p+1 - 12’2p+1 e >
lp,2p+1-

The notion of dominance for the set of complex
numbers ho,r1 = (hi2ps1, ho2pr1s o, Ppopyr) s
introduced by the replacements l;2p+1 — h;2py1 and
D* — D,jf in the previous definition.

We say that w = {mn,cn_l,hn_l,---,CQ,hg} is
dominant if every of the sets 1,, h,,_1, - - -, hs is dominant
and if 0 < Argey; < 2n/k, j = 2,3,---,n—1; i =
172;:|_J/2J

Theorem 6 [15]. The representations T,, of U,(so,)
with dominant w are pairwise nonequivalent. Any
irreducible representation T, is equivalent to some
representation T, with dominant w.
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IIPEJICTABJIEHHA AJITEBPU U (s0,), 3B’A3AHOI
3 KBAHTOBOIO I'PABITAIIIEIO

A. V. Kaimux
Pe3smowme

Jlana pofoTa € OIJIsSAOM HAMUX pe3yJabTaTiB 3i ckindeHHO-
BUMIPHUX MPEJACTaBJIE€Hb HECTAHAAPTHOI ¢-aedopMalril U,;’l(son)
yaiBepcanbro! 00BimHOI amrebpu U(so,) amnrebpm JIi so,, sxa
He 36iraeTbcss 3 KBAHTOBOKO asrebpor Jlpindenbga—/lxkimb60
Uq(s0r). Il anreGpa 3B’s3aHa 3 anrebpaMm CIOCTEPEKYBAHUX
y KBAHTOBi# rpaBitamil i 3 anrebpaiunor reomerpiero. Hasene-
HO He3BijHI ckinuennoBMMipHI mpejcTaBnenus anrebpu U, (son),
KOJX ¢ HEe € KOpDeHeM 3 OJWHHUIi i Koau ¢ — KOpiHb 3 ofu-
HUII.
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NPEJCTABJIEHUS AJITEBPHL U (s0,), CBSIBAHHOI
C KBAHTOBOI TPABUTAIIUEN

A. V. Kaumovix
Pe3zwowme

Jlannast pabora mpemacTaBisier co00# 0030p HAIMUX PeE3yJibTa-
TOB TI0 KOHEYHOMEDPHBIM TIPEJCTABJIEHUSIM HECTAHJAPTHOU ¢-
nedopMmanuu U(;(son) VHUBEPCAJIBLHOU OOBEPTHIBAOIIEH aJITe0phI
U(s0r ) anreGpst JIu son, He cOBnajaromeil ¢ KBAHTOBOI anreGpoil
Jpunadensaa—Ixumbo Ugy(sorn). DTa anrebpa cBg3ana ¢ anrebpa-
MU HaAOJIIOJAEMBbIX B KBAHTOBON I'DABUTAIMU U C aJrebpanmveckoit
reomerpueii. [IpuBesieHbl HENPUBOAMMBIE KOHEYHOMEDHBIE TIPE/I-
crapjenus anreGput Uy (son) A1 Cllywaes, KOrga ¢ HE SBJISETCS
KOpHEM U3 eJWHUIBI U KOTJA ¢ — KOPEHb U3 eJIUHUIIBI.

249



