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The tensor product of vector and arbitrary representations of the
nonstandard g¢-deformation Uj(son) of the universal enveloping
algebra U(so,) of the Lie algebra so, is defined. This algebra
is known to be related to (2 + 1)-dimensional quantum gravity.
The Clebsch—Gordan coefficients of tensor product of vector and
arbitrary representations of the classical or nonclassical type of
the g-algebra Uy (son) are found in an explicit form. The Wigner—
Eckart theorem for vector operators is proved.

1. Introduction

For the last fifteen years, much attention of
mathematicians and mathematical physicists is
attracted to the subject of quantum algebras and
quantum groups. Besides the standard deformation
of Lie algebras proposed by Drinfeld [1] and Jimbo
[2], other (nonstandard) deformations are also under
consideration. This paper deals with the deformation
U,(so,) of the universal enveloping algebra U(so,)
proposed by Gavrilik and Klimyk [3]. Let us mention
that the algebra U, (so3) appeared earlier in [4].

As a matter of interest, the algebras U, (so,) arose
naturally as auxiliary algebras in deriving the algebra of
observables in 2+1 quantum gravity with 2D space of
genus g, so that n depends on g, n =2g+2[5 - 7].

As shown in [8], the algebra Uj(so,) admits
a ¢-analogue of the Gel'fand-Tsetlin formalism
for construction of finite-dimensional irreducible
representations. Since the algebra U; (so,) is not a Hopf
algebra, there is no natural way to introduce the notion
of tensor product of representations. But, as shown in
[9 — 11], the algebra U,(so,) is a subalgebra in the
Drinfeld-Jimbo Hopf algebra U,(sl,). Moreover, it is
possible to show that the algebra U,(so,) is a Uy (sl,)-
comodule algebra such that the coaction coincides with
the comultiplication in U,(sl,) if one embeds U,(so,)
into Uy(sly). This comodule structure can be used to
introduce the tensor product of vector and arbitrary

representations 7' of U, (so,,) (it will be denoted by T'%),
see [12].

We describe the decomposition of T® into irreducible
subrepresentations and write down the corresponding
Clebsch—Gordan coefficients in the case where T is
an irreducible finite-dimensional representation of the
classical or nonclassical type. The decomposition of T'®
in the case of classical-type representations has the
same form as in the case of the Lie algebra so,, and
the corresponding Clebsch—Gordan coefficients are g¢-
deformation of their classical analogues [13, 14].

It is well known that the Wigner—Eckart theorem for
the tensor operators with respect to the Lie algebra so,,
(and, especially, so3) is very important in physics. In this
paper, we give a g-analogue of such theorem in the case
of vector operators.

Everywhere below, we suppose that ¢ is not a root of
unity.

2. The g-deformed Algebra U, (so,) and
Quantum Algebra Ug(sl,)

According to [3], the nonstandard g-deformation U, (so,,)
of the Lie algebra so,, is given as a complex associative
algebra with n — 1 generating elements Iy, I30,...,
I, n—1 obeying the defining relations

2 2
I adljrj—2+ Ija ol ; 1 —

2 j-1dj-1j-21j-1 = —Ij1j-0,
2 2
Iy jodjjr + 115y 50—

—[2j—1,j—21j 51112 = =1} 1,

(Lii-1,1j5-1] =0 if [i—j|>1, (1)

where ¢ + ¢! = [2], ¢ € C, ¢ # 0,£1. Tt is useful to
introduce the generators

I = Mg Jots E>14+1, 1<klI<n, (2
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where [X,V]s1 = ¢*'2XY — ¢F2Y X and I
Ik_+1,k = Ijy1k- If ¢ > 1 (‘classical’ limit), the set of
relations (1) reduces to those of U(soy,).

The algebra U,(so,) can be embedded into the
quantum algebra U,(sly,), which is defined [1, 2, 15]
as a complex associative algebra with the generating

elements ei,fi,ki,ki_l, 1=1,2,...,n— 1, and defining

relations
kiki7' =k ki =1, kikj = kjk;,
kiejki_l = q‘“jej, sz]kl_l = qiaijfja
lei,ej] = [fi, fi1 =0, [|i—j|>1,

ki —k;t
ei, fil = 52..271’
et f3] = 0y — 55

6?61':‘:1 - (q + qil)eieiilei —+ ei:l:le? = 0’
fffiil —(g+ q_l)fifiilfi + fiilff =0,

where a;; = 2, a; ;41 = —1 and a;; = 0 for |i—j| > 1. It is
shown in [9],[10], that the elements I~,~+1,i = fi—q ke,
i = 1,2,...,n — 1, satisfy relations (1) and define
a homomorphism Uy (so,) — Uy(sl,). Moreover, it is
proved in [11] that this homomorphism is an embedding;,
that is, we may consider U;(so,) as a subalgebra in
Uy (sly).

The quantum algebra U,(sl,) possesses the Hopf
structure. Comultiplication on the generators of this
algebra can be defined as

A(ei):ei®k;1+l®ei,
A(f)=fiol+k® fi
Ak;) = k; @ k;.

Therefore, we obtain the coideal property of Uj(soy)
embedded into U,(sly,):

ATij1) = Lig1: @1+ k; @ Ty 4

Proposition 1. The algebra Uj(so,) is a Uy(sly)-
comodule algebra with the coaction ¢(Ii1q1,;) = NHLZ- ®
L+ ki ® Liga,i. If one embeds U, (s0p) into Uy(sly), the
coaction ¢ reduces to a comultiplication A of Uy (sly,).
Proof. This proposition can be verified by direct
calculation. |
In particular, Proposition 1 claims that ¢ is a
homomorphism from Uy (so,) into U,(sl,) ® U, (son).
This comodule structure can be used to introduce the

ISSN 0508-1265. Yxp. ¢pis. orcypn. 2002. T. 47, N 3

tensor product of vector and arbitrary representations
T of Uj(son).

Let T' be a representation of U,(so,) on the linear
space V with the basis {v,} and Vq be the n-dimensional
linear space with the basis {v}, £ = 1,2,...,n, and
VO =V ).

Proposition 2. The map T® from U](so,) to End V®
given by the formulas

T® (I j-1) (vj—1 @ va) = q vj—1 @ T(I j_1)va—

~¢'? v; ® va, (3)
T®(Ij5-1) (v ®va) = ¢ v @ T (I j-1)va+

—q /2 Vj—1 & Va, (4)
T j-1) (Vg ® V) = vk @ T(Ij j—1)Va,

J#k, j-1#k (5)

defines a representation of U, (so,) on the space Ve,
Proof. Let us define representation 77 of U,(sly,) on the
space V1 by the formulas

Ti(e)ve = —q Y2841 10k 1,
Ta(f) vk = —q"/28; kvks1, (6)
Ta (ki) v = @O0k,

It is easy to verify that this representation is a
vector representation (that is,the representation with
the highest weight (1,0,...,0)). The action formulas (6)
imply

TilTig1i) vk = =26 poess + ¢ /2051 pvp1- (7)

This representation of Uy(so,) is equivalent to
the classical type representation Ty, with m, =
(1,0,...,0), that is, the vector representation (see next
section). Hence, similarly to the classical case, the
restriction of the vector representation of U,(sl,) onto
U,(son) is the vector representation of U, (so,). This
proposition immediately follows from Proposition 1 and
formula (7), if one takes T® = (T, @ T') o ¢. O

In the case where T is the trivial representation of
U, (son) given by formulas T'(a) = 0, a € U, (so,), a # 1,
Proposition 2 gives us a representation on the space
V1 ~ V®. We denote this representation by T;.

Ty(Ijj—1) vk = =20 j—10j + ¢ /265 juj1.

The representations T3 and Ty, , m,, = (1,0,...,0) (see
next section), are equivalent.

In the limit ¢ — 1, Proposition 2 defines the
representation which is the tensor product of the vector
and some arbitrary representation of the Lie algebra so,,.
On the base of these two arguments, we shall also use
the notion T® =Ty @ T.
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3. Finite-dimensional Classical Type
Representations of U, (so,,)

In this section, we describe (in the framework
of the Gel'fand-Tsetlin formalism) irreducible finite-
dimensional representation of the algebra U, (so, ), which
are g-deformations of the finite-dimensional irreducible
representations of the Lie algebra so,. They are given
by sets m,, consisting of |n/2| numbers mj , M2 p, ...,
Mn/2|,n (here |n/2] denotes the integral part of n/2)
which are all integral or all half-integral and satisfy the
dominance conditions

M1 2p+1 2M2 2p 412> -.. 2 M 2p41 > 0, )

M1 2p>M2 29> . > M1 2p>|Mp 2p]
for n = 2p+ 1 and n = 2p, respectively. These
representations are denoted by Ty,,. For a basis in a
representation space Vi, , we take the g-analogue of the
Gel’fand—Tsetlin basis which is obtained by successive
reduction of the representation T5,, to the subalgebras
Uy(s0n-1), Uy(son—2), -+, Uy(s03), Uy(s02) = U(s02).
As in the classical case, its elements are labelled by the
Gel’fand-Tsetlin tableaux

{fn} = {mnafnfl} = {mnamn717€n72} =---
={m,,m, 1,...,my}, (9)

where the components of mj and my_; satisfy the

“betweenness” conditions

v

M1 2p+1 = M1 2p = M2 2p41 = M2 2p
> Mp,2p4+1 > mMp2p > —Myp 2p+1,
My2p > M12p-1 > M22p > Ma2p 1
> Mp—1,2p-1 > |Mp2p].

Y

The basis element defined by the tableau {¢,,} is denoted
as |&,). We suppose that the representation space Vi,
is a Hilbert space and vectors |£,,) are orthonormal. Tt is
convenient to introduce the so-called I-coordinates
ljopt1=myjopr1+p—j+1, ljop=mjop+p—j (10)
for the numbers m; ;. The operator Tm, (Iop+1,2p) Of
the representation T, of U, (so,) acts upon Gel'fand—
Tsetlin basis elements, labelled by (9), as

Ton, (Tprap)l6n) = D A3 (€) (6a)3) -

p

— AL (E)DIED)3))

Jj=1

(11)

232

and the operator Ty, (I2p2p—1) of the representation
T, acts as

T, (Bopop1)|6n) = X021 B, 1 (&)l(&n)37 1)~
— S Bl (&) 5 ) () )+
+i CQP—I (fn) |£n>a

Tm, (I21)[€n) = i[l12]|&n)-

In these formulas, (fn)kij means tableau (9) in which j-
th component m; in my is replaced by m; = 1. The
coefficients A3, By |, Cap 1 in (11) and (12) are given
by the expressions

(12)

4 Liopl[ljo +1]>% .

Al n:<[J7P 3.2p Alp 13
(&) =\ G 02y 1 21) 2 (13)
j Bj — (gn)

B%pfl(fn) = -1 ) (14)

(.20 1]([20j.2p 1 4+1][205.2p 1 —1]) 2

A= [l [li2p1 + Liopllliops1 — Lj2p — 1]
v [Tisjlli2p + Li2pllli2p — L2

y T102 izp—1 + Lizplllizp-—1 — Ligp — 1]\ 7 (15)

nyéj [li,2p + lj,2p + 1][li,2p - lj,2p - 1]

and
Bl (6 = (

Hf:l [li,2p + lj72p71][li,2p _ lJ',?pfl]
12 (liop—1 + 2p—1llli2p—1 — L 2p1]

Hf;ll [li,2p72 + lj72p71][li,2p72 - lJ',?pfl] ’ (16)
T12, [l 21+ 2p—1 = 1[Li 2p1—1j 2p—1—1]
C2p—1(fn) — Hf:1[li,2p] Hf;f [li,2p72]

122 [li2p—1]lli2p—1 — 1]

where numbers in square brackets mean g¢-numbers
defined by [a] := (¢° —q™*)/(a —q7").

(17)

4. Finite Dimensional Nonclassical Type
Representations of Ué (son)

The representations of the previous section are called
representations of the classical type, because, at ¢ — 1,
the operators T, (Ij,j—1) turn into the corresponding
operators Ty, (I;,j—1) for irreducible finite-dimensional
representations with the highest weights m,, of the Lie
algebra so,,.

The algebra Uy(so,) also has irreducible finite-
dimensional representations T' of nonclassical type, that
is, such that the operators T'(I;;—1) have no classical
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limit ¢ — 1. They are given (see [16]) by sets € :=
(€2, €3, -, €n), € = £1, and by sets m,, consisting of
[n/2] half-integral numbers m; ,, M2n,--., M{n/2|n
(here |n/2]| denotes the integral part of n/2) that satisfy
the dominance conditions

Min 2 Map 2 o 2 Mpj2|n > 1/2. (18)
These representations are denoted by T¢ m,,
For a basis in the representation space Vi, , we use

the analogue of the basis of the previous section. Its
elements are labeled by the tableaux

{&n} =

={m,,m,_1,...

{m,, & 1} ={m,m, 1,6 o} =---

,mz}, (19)

where the components of mj and my | satisfy the

“betweenness” conditions

My2pt1 > My2p > M2 2pt1 > M22p > ..
Z mp,2p+1 Z mp,?p Z 1/21

My2p > M12p—1 > M22p 2> M22p—1
> Myp_12p—1 > My 2p.

v

The basis element defined by the tableau {¢,,} is denoted
as |&,). We suppose that the representation space Ven,
is a Hilbert space and vectors |£,) are orthonormal. It is
convenient to introduce the l-coordinates as in (10).

The operator T m, (l2p+1,2p) of the representation
Tem, of Uj(so,) acts upon basis elements, labelled by
(19), by the formula

€2p+1
Tem, (Tap41,2p)160)=0m, 2,172 WDQP(E’N”&.’I?,)

(62)2),  (20)

((n)2)

p
+D A3, (&I Z A
j=1

where the summation in the last sum must be from 1 to
p—1if my 2, = 1/2, and the operator Tm,, (I2p2p—1) of
the representation Ty, acts as

ZB2p 1

T mn(12p,2p 1 |fn );;f—l)_

_ZBQp 1((6n)3, 2p— 1)|(fn)2_g—1>+52p6’2p—1(fn)|§n>a (21)

Tem, (I21)[€n) = €2[li2]+]&n),

Where [aly == (¢ +q %) /(¢ — ¢ }). In these formulas,
(fn) means tableau (19), in which the j-th component
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m; x in my, is replaced by m; ; & 1. Matrix elements fiép

and ngfl are defined using formulas (15) and (16):

p\Sn T,
(gl = q-laon) (gloort1 — gbizr1))
B% 1(5 ) = ng—l(fn)
p—1\5n T
[1.2p—1]+ ([2L,2p—1 + 1][20j2p—1 — 1]) ®
Hp 1[ls 2p]+ Hp;; [ls,2p72]+
C " 5 s
" 1(6 ) H [ s 21)*1]+[ls,2p71 - 1]+
Do) = Mimalliaps = JTIE Wips = 3]
p\Sn) = .

f:l [li,2p + %][liﬂp - %]
5. Decomposition of Representations T7 ® Ty,
of the Algebra U, (so3)

In this and in the next sections, we consider the
decomposition of representations T® = Ty ® Ty, into
irreducible constituents of the algebra Uj(so,). In this
section, we restrict ourselves to the case n = 2, 3.

First, we consider the case of the algebra U, (so02) =
U(so2). This algebra has representations Ty, m = m2,
m € %Z, of the classical type acting on one-dimensional
spaces with basis vectors |m), and Ty,(I21)|m) =
ifm]|m). Then

T?(Iy) (v, ® |m)) = iglm]vy ® |m) — ¢*/?vy @ |m),

T®(In1)(vs ® |m)) = ig *[m]vs ® |m) + ¢~ /v, @ |m).

This representation is reducible. We introduce the
vectors

v(im) = Fig /My + vy (22)
Then the vectors |m + 1)® := v;m) ® |m) are the

eigenvectors of T®(Iz1): T®(In)lm £ 1)® = ijm +
1]Jm £ 1)®. This fact can be easy verified by direct
calculation using the definition of ¢g-numbers. Thus, we
have decomposition T7® =Ty @ Ty, = Tyy1 © Tr1.
Now, we consider the case of the algebra Uj(so3).
This algebra has representations T, mz = (m3) = (1),
le€{0,1/2,1, 3/2,...}, of the classical type acting on
the spaces V; with the basis vectors |I,m), (m = m2),
m=—l,—1+1,...,1:
TI(I21)|l7m) = l[m”l:m):
T\(Is2)|l, m)

= Al’m|l,m + 1) — Al’m,1|l,m — 1),

233



M. IORGOV

where A, = d ([l — m][l + m + 1))'/2, d,, = ([m][m +
1]/([2m][2m + 2]))1/2. Let us consider the vectors

[I',m)® = al(’l;ivg_m_l) ® [l,m — 1)+

+80) 0y |1, m) + 40 @ |Lm + 1), (23)
where m = —I',—I' +1,...,I', and

V=1+1,0,0—1 if [>1;

I'=3/2,1/2 if 1=1/2; U'=1 if [=0.

The vectors v{™ in (23) are defined in (22) and

't = g mm 24, ([ m][l 4 m 4 1)),
D = (= m [+ m o+ )Y,

(D = g2 ([ — m]l — m + 1)1
o), = =4 " 2y ([ mlll = m o+ 1),
) = [ml,

YD = g 2 (L= m]ll 4+ m 4+ 1)),

all V= =g 2y ([l - mlll — m o+ 1)),
D = ([ = m]lt +m])'?,
,yl(lml) qfl+mfl/2dm([l+m][l+m+1])1/2.

In the case of Ug(so2), it is easy to see that
T®(Iy)|l',m)® = i[m]|l',m)®. One can show by direct
calculation that T®(Iso)|l',m)® = Ay p|l',m + 1)® —
Ay m—1|l';m — 1)®. It means that the vectors |I’,m)®
at fixed I’ span a subspace in V®, which is invariant
and irreducible under the action of 7% (a), a € U/(s03).
The corresponding subrepresentation is equivalent to
T;:. Comparing the dimensions of Tj with the dimension
of T®, we conclude that T® =T, 1 @ T, & T)_1 if I > 1;
T® = Ty ® Ty ), if | = 1/2; T® = Ty if | = 0. Let us

recall that T; ) gt

lLm> Mlm

= Tz, M1z = . The numbers «

and %(172 are the Clebsch-Gordan coefficients of these
decompositions.

234

6. Decomposition of 77 ® Ty,
U, (son), n > 4

of the Algebra

In this section, we consider the decomposition of the
representations 7® = T1 ® Tr, of the algebra U (so,),
n > 4, into irreducible constituents. All the results of
this section are obtained in [12]. As shown there, this
decomposition has the form

® —
™= D 1. (24)
mnES(mn)
where
S(mapi1)= U{me—‘,-l}U U{me-‘,-l}U{me-‘rl}’ (25)
p .
S(myyp) U{m 7Yu (J{my,) (26)
j=1
By m}J we mean the set m, with m; ., replaced by

m;, £ 1, respectively. If some m}7 is not dominant
(8), then the corresponding m;f/ must be omitted.
If mpopr1 = 0, then my,q on right-hand side of
(25) also must be omitted. Decomposition (24) of the
representation T® corresponds to the decomposition of

the carrier space:
D .

V® = Vl ® an = (27)
€S(m,,)

n

In order to give this decomposition in explicit form, we
change the basis {v; ® |&:)}, k¥ = 1,2,...,n, in V&
to {vr ® &)}, kB = +,—,3,...,n, by replacing (for
every fixed {£,} = {m,,my,_1,.. mg,mg}) two basis
vectors vy ®|¢,) and v2®|&,) by v)) (mz)g1¢,) and 0™ @

|€n) (see (22)). From now on, we shall omit the index

(m12) in the notion of the basis vectors v(i mz) ) |€n),

supposing that it is equal to the mjs-component of the
corresponding Gel’fand-Tsetlin tableaux {&,}.
We introduce the vectors (where {£),} = {m/, m}_,,
, my, my})
|m,n:€n71>® =

=2 >

(ka (mTH é.;z—l)|(mlna gnfl)) X

k mp,g 1 )EVm,
Xvg, @ M, &, 1) (28)
in the space V®, where k runs over the set +, —,3,...,n,

and the coefficients (k, (my,&),_,)|(m],,&,—1)) are
Clebsch-Gordan coefficients (CGC’s). Now we define
these CGC’s in explicit form.
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We put (k, (my, &,_,)|(m),,&,—1)) = 0 if one of the
conditions

)m; ¢ S(ml),s=n—-1,...,k, k>3,
I m, ¢gS(ml),s=n—-1,...,3, k=+,—,
4) f;cfl #fkflykzsaéla"'an:

5) ml?#mlm"_lak:'h

6)m127$m12 1,k=-—

is fulfilled. The nonzero CGC for k = n are:

(2p + la (m2p+17 §2p)|(m;_1;j-|—15 621’)):

p 1
:(H[ljﬂpﬂ + lr2p]llj2p+1 — lr,2p]) 2,

r=1

(2p + 15 (m2p+17 6217) | (m2p+lv 6217)) =
= H [lr,2p]a
r=1

(217 + 1, (mopt1, f2p)|(m2_1;];|-1: f2p)) =

p 1
= (H [Lj.2p+1 +lr,2p—1][lj,2p+1—lr,zp—ll) 2’ (29)
r=1
(2]7, (m2pa £2p71)|(m;rpj: 52;071)) =
p—1 1
2
:(H[lmp + lrap—1]lljzp — lr2p—1 + 1]) ;
r=1
(2p7 (m2pa £2p—1)|(m2_pja £2p—1)) =
p—1 1
:(H[lmp +lr2p—1 — 1[lj2p — lr@p%]) : (30)
r=1

(They are defined up to normalization, that is,
multiplication of these CGC’s by some constants will
not spoil the following results.)

All the other CGC’s can be found from the just
presented as follows:

(ka §n|&z) = qkin X

<mn+17 €n|Tm"+1 (In+17k)|mn+1a f%)

<mn+1a m,, &, 1 |Tm"+1 (In+1,n)|mn+1a m;w fnfl)
X (n7 (mnv fn—1)|(m{n, fn—l))a

where the generators I, | , are defined in (2). If k=+ or

k=— on the left-hand side of (31), one must put k=2 on

X

(31)
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right-hand side. The set m,,; must be chosen to give a
non-zero denominator on right-hand side of (31). Note
that if (n, (my, &p—1)|(m),, &n—1))#0, one can always do
such a choice, moreover, the resulting CGC will not
depend on this particular choice. In case of n=3, we re-
obtain the CGC’s for the algebra U,(so3) (see Section
5).

As shown in [12], the defined CGC’s have the
factorization property. This fact (in complete analogy
with the classical case, see [13, 14]) gives a possibility
to present arbitrary CGC for the algebra Uy (so,) as a
product of scalar factors.

Theorem 1. The formulas for the action of the
operators T®(Ip41,1), k =1,2,...,n—1, on the vectors
lm/,,&,—1)® defined by (28) with CGC’s defined by
(29)-(31), coincide with the corresponding formulas
(11)-(12) for the action of the operators Ty (Iry1,1) on
the GT basis vectors |ml,, &,_1). We have decomposition

(24).

7. Decomposition of Representations
T1 ® Te,m; of the Algebra Ué(503)

In this and in the next section, we consider the
decomposition of representations T¢ = Ty ® Te,m, into
irreducible constituents of the algebra Uj(so,). In this
section, we restrict ourselves to the case n = 2, 3.

First, we consider the case of the algebra U, (so02) =
U (s02). This algebra has representations T, m, €2 = %1,
m =my2, m € {1/2,3/2,...}, acting on one-dimensional
spaces with basis vectors |m), and Te, m(l21)|m) =
€2[m]4|m). Then the representation T® = T1 ® Te,  is
two-dimensional and reducible. We introduce the vectors

,U(ifmm) — —1/24+m

—€2q V1 + V2. (32)

Then the vectors |m + 1)® := vf’m) ® |m) are
eigenvectors of T®(I1): T®(Ix)|lm £ 1)® = e[m +
1]4|m £ 1)®. This fact can be easy verified by direct
calculation using the definition of ¢g-numbers. Thus, we
have decomposition T® = T4 ®@Te 1y = Teym+1 B Teqy,m—1
if m > 3/2, and T® = T ® T€2’1/2 = T€273/2 > T€271/2 if
m=1/2.

Now, we consider the case of the algebra U, (so3).
This algebra has four classes of representations of the
nonclassical type T, € = {e2,€e3}, € € {£1}, m3 =
(mig) = (1), 1 € {1/2, 3/2, 5/2,...}, acting on the

spaces V, with the basis vectors [l,m), (m = mia),
m=1/2,3/2,...,1:
Tea(I21)|l,m) = e2[m] 1[I, m),
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Tei(Is2)ll,m) = Appullym + 1) = Ay 1 |l,m — 1)

if m > 3/2,
Tea(I32)|,1/2)=A11 |1, 3/2)+es[1/2]4.[14+1/2]]1,1/2),
where Ay = dpn ([l — m][l + m + 1)'2, dpy = ((¢™ —

g ") (gt — qu’l))fl/Q. Let us consider the vectors

+3") 05 @ |1, m) +ﬁ(l,,2 2t @ 1,m + 1), (33)
where m = 3/2,5/2,...,1', and
U=i+1,1,1-1 if 1>3/2; 1I'=3/2,1/2 if 1=1/2.

If m = 1/2, we should replace |I,—1/2) by |I,1/2) on
right-hand side of (33).

(62 7m) 1

The vectors vy n (33) are defined in (32) and

T MY | ) VEN
B = ([t —m + 1+ m o+ 1)V2,

G = g2 ([ = mll - m + 1)V,

a0, = " ([ = 1),

Bl(lr)n = [m]4,

7 = =g 2y ([l — m[l+m + 1)V,

6 D= = P (] -m 1), it
3D = ([t —m)ll +m)) /2,

D = 2 ([ m] [+ m 4 1)),

alt) = ~q L2 e ([ + 172000 + 3/2))'7,

) = —a /2 el + 1/2),
al'sY) = T /2 - 17200+ 1/2)) 2

From the case of Uj(soz), it is easy to see that
TO(Iy)|l',m)® = es[m]4|l';m)®. One can show by
direct calculation that the operator T®(I3;) acts on
the set of vectors |I',m)® at some fixed I’ as the
operator T¢ ;(I32) acts on the Gel'fand-Tsetlin basis

236

vectors |I’,;m). It means that the vectors |I',m)® at
fixed I’ span a subspace in V®, which is invariant and
irreducible under the action of T7®(a), a € U}(so3). The
corresponding subrepresentation is equivalent to Tt ;.
Comparing the dimensions of T¢ ; with the dimension
of T®, we conclude that T® = T ;41 ©Tey & Tey—1, if
1>3/2;T%® =T, 3/5® T, )2, if | = 1/2. Let us recall

that TeJ = T€’m3, mq3 a5 g0

= [. The numbers Y m> Brom
and '7,(”,2 are the Clebsch—Gordan coefficients of these

decompositions.

8. Decomposition of T1 ® T¢,m, of the Algebra
U,(son), n > 4

In this section, we describe the decomposition of the
representations 7% = T ® T, m,, of the algebra U, (son),
n > 4, into irreducible constituents. This decomposition
has the form

%= @ Tem, (34)
mj €5(my,)
where
S(mapi1) U {m2p+1} U U {m2p+1} u {m2p+1}7 (35)
S(myp) (36)

U{mQJ}U U{mg_pj}-

By m:/, we mean the set m,, with m;, replaced by
mjn % 1, respectively. If m;, 5, = 1/2, the element m,,”
on right-hand side of (36) must be replaced by msy,. If
some m:/ is not dominant (18), then the corresponding
m;*/ must be omitted; in particular, if m, 2,1 = 1/2,
the element mj;”, ; must be omitted. Note, that the
representation Th ® T¢ m, decomposes into irreducible
nonclassical type representations with the same set € =
(€2,€3,...). Decomposition (34) of the representation
T®, corresponds to the decomposition of carrier space:
® — ¥ —
Ve=V1@Vem, = P Do

m’

(37)

)

€S(my)

n

In order to give this decomposition in explicit form,
we change the basis {vx ® |£,)}, £ = 1,2,...,n, in
VO to {vr ® &)}, kK = +,—,3,...,n, by replacing
(for every fixed {&,} = {m,,m,_1,...,m3, ms}) two
basis vectors v; ® |£,) and vs ® |€,) by v(ez’m”) ® [€n)
and v'*™2) @ |¢,) (see (32)). From now on, we shall
omit the index (ez,m12) in the notion of the basis
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vectors vﬁ?’mw) ® |€,), supposing that it contains the
migo-component of the corresponding Gel’fand—Tsetlin
tableaux {&,}.

We introduce the vectors (where {¢,} = {m/,, m/ _,,
..., mj, mh})

|m’na fn—1>® =

-> ¥

ko |my &) )€EVm,

(ka (mna 541—1)|(m’nv fn—l); 6) x

Xvp @ |my,, &,_1) (38)

in the space V¥, where k runs over the set +, —,3,...,n,
and (k, (my, &, ;)|(m),,&,—1);€) are Clebsch-Gordan
coefficients (CGC’s). Now we define these CGC’s in
explicit form.

We put (k, (my, &,_,)|(m, €0 1)i€) = O if one of
the conditions

1) m), ¢ §(my),
m; ¢S(ml),s=n—-1,...,k, k>3,

2)

3)ms€8(m;),82n_1’_‘_’3’ k:—|—’—’
4) & | #&1,k=3,4,...,n,

5) miz #mly + 1,k =+,

6) miy #mip =1, k=—, mi, >3,

6’) mi9 # m112, k= -, m’12 — %

is fulfilled. The nonzero CGC for k = n are:

(2p+1, (mopt1, §2p)|(m;—;}1, Eap)i€)=

1
2

p
:(H[lj,Qp-i-l + b 2plllj2p+1 — lrﬂp]) )
r=1

p
(2p+1, (mopy1, Eop) | (Mopi1, Eap)s€) = H [Lr 2]+
r=1

(2p+1, (mopt1, §2p)|(m2_p]}1, Eap)i€)=

p 1
= (H [Lj.2p+1 +lr,2p—1][lj,2p+1—lr,zp—ll) 2’ (39)
r=1
(2p, (mayp, f2p—1)|(m;rpja bop1)i €)=
p—1 1
2
:(H[lmp + lrap-1]lljzp = lr2p—1 + 1]) ;
r=1

(2p7 (m2pa £2p71)|(m27pja £2p71); 6) =

p—1

:(H[lmp +lrap—1 — [lj2p — lr,2p71]) ;

r=1

N
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(2p, (map, Eap 1) (Mzp, Eap 1) €)=

(40)

. 1
if my,2p = 3

(They are defined up to normalization, that is,
multiplication of these CGC’s by some constants will
not spoil the following results.)

All the other CGC’s can be found from the just
presented by the following formula:

(ks &alénie) = ¢ " x

<mn+1, £n|T€,mn+1 (11;+1,k) |m’l’l+1a f%)

X
<mn+],mn,§n_]|Tém 1(In+] n)|mn+],mn,£n_]>
sIMn ’

X (n, (M, &) | (M5, Eno1)s €), (41)
where the generators I, , are defined in (2), € =
(e2,€3y...y€n,+1). If k = + or k = — on the left-
hand side of (41), one must put k¥ = 2 on right-hand
side. The set m,41 must be chosen to give the non-
zero denominator on right-hand side of (41). Note that
if (n,(my,,&—1)|(m},&.,—1)) # 0, one can always do
such a choice, moreover, the resulting CGC will not
depend on this particular choice. In the case n = 3, we
reobtain the CGC’s corresponding to the nonclassical
type representations for the algebra Uy (so3) (see Section
7).

Theorem 2. The formulas for the action of the
operators T®(Iy11k), Kk = 1,2,...,n — 1, on the
vectors |m!, &,—1)® defined by (38) with CGC’s
defined by (39)—(41), coincide with the corresponding
formulas (20)-(21) for the action of the operators
Teom: (I1,1) on the GT basis vectors |mj,,&,—1). We
have decomposition (84).

9. The Wigner—Eckart Theorem for Vector
Operators

To fix the idea, we restrict ourselves to the case where
a vector operator acts on the space where direct sum of
classical type representations of U, (so,) is realized.
Formula (28) give us the transformation from the
basis {vy ® |£,)} to the basis {|€/)®} in the space V®.
Because of (27), the transformation matrix is a non-
degenerate matrix with matrix elements being CGC’s
(k,&nl€),)- Denote the matrix elements of the inverse
matrix by (&, |k, &) (inverse CGC’s). Let us find the
expression for the vector v, ® |my,&,_1) from (28)
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in terms of vectors |¢,)®. Since this vector transforms
under the action of T®(a), a € U}(s0,1), as the vector
|€n—1) under the action of Ty, _,(a) (see formula (5)),
from the Schur lemma, we have

Up ® |mna£n—1> =

= Z((m’nvé-n—lﬂn’ (mnagn—l)) |mIn7§n—1>®7 (42)

where the coefficients  ((ml,&,—1)|n, (Mp, &—1))
depend only on m), m,, m,_;. From (28), it also
follows that m], € S(m,). Although these coefficients
are uniquely defined by (28)—(31), we shall need only
their explicit dependence on m,,_1.

Definition 1. The set {V}, k =1,2,...,n, of operators
on V, where a representation T' of U,(so,) is realized,
such that

Vi, T(Ij-1)lg = Vs, [T(I-1),Vilg = Vi,

ifj#£kandj—1+#Ek,

where [X, Y]q:ql/QXY—q’l/QYX, 18 called the vector
operator of the algebra U, (so,).

It is easy to verify, that the action of the operators
T(I; j—1) on the vectors Vj v, directly corresponds to
action (3)-(5) of operators T®(I; ;_1) on the vectors
Vg @ Vy -

Let T be a direct sum of irreducible classical type
representations of Uy (so,) with arbitrary multiplicities.
Choose the Gel'fand-Tsetlin (GT) basis in V. Let
us consider an invariant subspace Vm, s where a
subrepresentation equivalent to Ty, is realized. The
number s labels the number of such a subspace if
the corresponding multiplicity exceeds 1. Combine the
vectors Vi, |(my, &€n—1); s), where {|(my,,&,—1);5)} is GT
basis of Vi, s, with CGC as in (28) for some fixed
m, € S(m,). Two variants are possible . First, all
the vectors |m),, &,—1)® are zero. Second, on the space
spanned by the vectors |m), &,—1)®, a representation of
U,(so,) equivalent to Ty is realized. From the Schur
lemma, it follows that

|mfm§n—1>® = Z(m;w SIHV”mm S) |m;w£n—1; Sl)a (45)

ry

(43)

[T'(1),j-1), Vk] = 0, (44)

where (m/,, s'||V||my, s) are some coefficients (reduced

matriz elements) depending only on m/,, s’, m,, s and
the vector operator {V}.}. Using the analogue of relation

(42) for the vector operator and (45) we have

> ((m),, &n1)n, (M, €n1)) X

! !
m/ ,s

Vn|mna fnfl; S) =
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X (m,, 8[|V [[m, 5) [mi,, £,-15 57).

(46)
As claimed above, the coefficients

((ml,, &—1)|n, (my, &—1)) may depend on m,,_;. Since
this dependence is identical for all the possible vector
operators in arbitrary spaces, we choose, for a moment,

V to be the space Vm,,,, of the irreducible representation
Tm,,, of Uy(sop1) for some convenient myyq, and

{Vi} = {Tm, . (I, ;)} Extracting the dependence on
m,,_; from the matrix elements of Ty, ([41,,) and
comparing it with formulas (29)—(30), we obtain

(), &1)In, (M, &01)) =
= (n, (1, &0-1) (), €01)) Ay, m,

where )‘m’n m, are some coefficients depending on m/,
and m,, only. Returning to formula (46) and denoting
(), |V ) = (0, '[[V 00, 8) X Ay am, s W
have

Vn|mn; &n—1; S) =

Z (n’ (mp, fn*1)|(m’m fnfl)) X

1 7
m) ,s

!
no

x(m/, s'||V|imy,s)" |m!,, & —1;s"). (47)

Iterating the second formula in (43), we obtain the action
formulas for {Vi}, 1 < k < n. Thus, we deduce the
following g-analogue of the Wigner—Eckart theorem.
Theorem 4. If V is a Hilbert space and its Gel’fand—
Tsetlin basis {|my,&q—1;5)} is orthonormal, we have,
for the components of a vector operator {Vi} on V, the
decomposition

(my,, & 158" Vi Jmp, §n15s) =

— (), €[k (g, €)' |V 1m0, )’
where

((m’Tw 52—1)“9: (mnv gnfl))’ =

(mn+la §;L|Tmn+1 (I:+1,k)|mn+la £n>

<mn+1a m), &1 |Tmn+1 (In—i-l,n) |mn+1a my, fn—1>

X (na (mna£n71)|(m’na£n71));1 S k<n

(see the comments after the analogous formula (31)).
Let T, be a direct sum of irreducible nonclassical type
representations of U, (so,) with arbitrary multiplicities
and fixed € on the Hilbert space V.. Choose the Gel’fand—
Tsetlin basis in V.. The space V. is a direct sum of
subspaces V¢ m,,s, where subrepresentations equivalent
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t0 Te m, are realized. The number s labels the number of
such a subspace if the corresponding multiplicity exceeds
1. Using the argumentation analogous to the case of
classical type representations, we derive the following
g-analogue of the Wigner—Eckart theorem in the case of
nonclassical type representations.

Theorem 5. If V. is a Hilbert space and its Gel’fand-
Tsetlin basis {|my,,&,—1;8)} is orthonormal, we have,
for the components of a vector operator {Vi.} on V., the
decomposition

(i, &, 158" [Vilmn, §n158) =
= ((m},, &), (M, Enn)i€) %
X (e, mly, /[ Vesm, 5)'

where

(), &, )|k, (mn, &nn)ie) =

<m’n+15 fé |T€7mn+1 (I:+1,k) |mn+1, £n>

<mn+1: mln; En1 |T€,m"+1 (In+1,n) |mn+1; my, £n71>

X (’I’L, (mn7€n71)|(m{m€nfl);€);1 <k<n

(see the comments after the analogous formula (41)).

The coefficients (e,my), s'||V||e, m,,s)’ are reduced
matriz elements for the vector operator {Vj}.

If the representation 7 is a direct sum of
classical type representations and nonclassical type
representations with different €, it is easy to find the
matrix elements for vector operators. It is sufficient
to take into account the fact that a vector operator
‘acting’ on a classical type representation can not give
a nonclassical type representation, and ‘acting’ on a
nonclassical type representation with some set € can not
give a nonclassical type representation with other set €.
Thus, the corresponding matrix elements are zero. The
non-zero matrix elements are described by Theorem 4
and Theorem 5.
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TEOPEMA BITHEPA-EKKAPTA JIJIsI JIESAKOI AJITEBPH,
10 3’ABJIAETHCS B KBAHTOBIN I'PABITALIIT

M.3.Iopaos
Peszwowme

BusnavyeHo TeH30pHMI J00yTOK BEKTOPHOTO Ta JOBIJIBHOTO IIPeJ-
CTaBJIeHb HECTAHJAPTHOI ¢-medopMarii U(;(son) yHiBEpCanIbHOI 06-
Bigaoi anre6bpu U(son) amrebpu JIi son. Bigomo, mo us anre6-
pa 3’aBngeTned B (2 + 1)-BumipHiit kBaHTOBIN rpasiTanii. 3uaiige-
HO B siBHOMY Burjsigi koedinientun Kiebma—Topgana TeH30pHOrO
100yTKy BEKTODHOTO Ta AOBIIBHOrO (KJIACHIHOrO a00 HEKJIACHI-
HOTO THILY) IPEJCTABJIEHb ¢-arebpu Uqll (son). ToBemeno Teopemy
Birmepa-Exkapra /51 BEKTOPHUX OIEPATOPIB.

TEOPEMA BUTHEPA-9KKAPTA JIJIs1 HEKOTOPOTI
AJITEBPBI, HOSIBJISIIOIIENCSI
B KBAHTOBOT TPABUTAIINN

H.3.Hopzos
Peswowme

OmnpejiesieH0 TEH30PHOE NPOU3BEEHUE BEKTOPHOTO M TPOU3BOJIb-
HOTO Tpe/ICTaBJenuit nectanapTHoit ¢-nedopmanuu U, (so,) yHu-
BepcasibHO obepreiBaromeit anreGpst U(son) anrebpsr Jln sop.
3BecTHO, 9TO 9Ta anrebpa nossisgercsa B (2 + 1)-mepHOH KBaH-
TOBO# rpaBuranuu. Haiigensl B sBHOM Buje KoeduIreHTH
Kiebma—Topgana TeH30pHOTO TPOU3BEIEHNS] BEKTOPHOTO U IIPOU3-
BOJIBHOTO (KJIACCHIECKOTO WJIM HEKJIACCHYECKOTO THIIA) MPEICTAB-
Jsennit g-anrebput U, (son). Jlokasana reopema Burnepa-Sxkapra
JI/IA BEKTOPHBIX OTIEPATOPOB.
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