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In this talk, the quantization of noncommutative field theories is
reviewed. Particular weight is given to the convergence theorem
by Chepelev and Roiban. Several examples of renormalizable
noncommutative field theories are given.

1. Introduction

The idea of using non-commuting coordinates as a
method to quantize space and time goes back to
Snyder [1]. More recently, this idea has become popular
due to the appearance of noncommutative space-time
in a ’stringy setting’ [2]. However, non-commuting
coordinates are interesting in their own right, especially
seen in the light of the work by Connes and co-authers
[3], who managed to relate the standard model and
gravity to a partly noncommutative geometry.

In this short talk, I will consider field theory
constructed on a noncommutative algebra involving
a constant noncommutative parameter. Since this
parameter will have dimension —2, the corresponding
field theory will be power counting non-renormalizable.
Thus, the question of renormalization is a priori of
fundamental importance. I will give a short review of
the present state of the art as well as a few examples of
renormalizable noncommutative field theories.

2. Noncommutative Field Theory

It is assumed that the smooth structure of space-time
will break down at some scale (Planck scale) , rendering
a noncommutative algebra generated by ’coordinates’
z*, and the commutator relation

[, 4" = i0" | (1)

This algebraic structure may be represented via a *-
product, which may be given explicitely in this case of a

constant 6 as

d'k [ d
@) = [ g1 [ e
xetn)a" 680" ko (k) () )

where f(z),g(z) are functions on a commutative
manifold. Note that the x-product is nonlinear. The -
product (2) reassembles the algebraic relation (1) on a
commutative manifold

[2#,2"], = a¥ x2¥ — ¥ x x* = i0* . (3)

One may now define a noncommutative field theory by
constructing an action in the usual manner and replacing
usual products with the x-product. However, in the case
of gauge theories, special care must be made [4]. The
*-product is cyclic invariant:

/dD$(¢1*¢2*---¢n)($) =

:/de(qu*...qﬁn*dJl)(x), (4)

which very much resembles the cyclic property of the
trace. This observation lies at the heart of the non-
Abelian structure appearing in noncommutative Abelian
gauge theories [4].

Also, using (6), one may perform the functional
derivation

0 [ ar, 2) =
s [ AP 6w 0) @)
= (62%--60) (4) 6z ). o)

Properties (6) and (5) suggest that commutative
(classical) symmetries such as gauge- (BRST-) and
super-symmetries will persist in some sense also in the
noncommutative realm.
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3. Feynman Graphs and Loop Calculations

3.1. Feynman Rules

In order to check the perturbative UV and IR behaviour
of a noncommutative field theory, one needs the
corresponding Feynman rules. Due to the identity

/ 0P (61 % 62) (&) = / Pz ($1) (2) | (6)

which states that the 6#-pendency of the *-product
vanishes for bilinear terms, one finds that the
propagators are unchanged. For the noncommutative
vertices V. , x-product (2) yields a phase

1
Vnc(kla"' vkn) = E‘S(kl + ... +kn)><
xexp(iy_ 0%%kiokjp) - (7)
i<j
It is the presence of phase (7) which makes

noncommutative field theories of fundamental interest.
Indeed, one could hope that the total phase obtained in
a Feynman graph would give a damping effect which
could render the graph UV finite. In the following, we
shall see that this is only partly true.

3.2. Feynman Graphs

With the above set of Feynman rules one finds that the
noncommutative effect on the integrand of a Feynman
graph I,,. sums up to a phase

I, = exp(igo)] ’ (8)

where [ is the integrand valid in the commutative
case and ¢ is some phase. However, it was shown
by Filk [5] that for planar, diagrams, i.e. diagrams
without crossing of lines, the phase only depends on
the external momenta. Only in nonplanar diagrams, i.e.
diagrams with crossing momenta lines (see Figure), one
obtains a phase involving internal loop momenta. This
difference is crucial: Planar graphs will display exactly
the same convergency behaviour as in the commutative
case, whereas nonplanar graphs will (to some extent)
be damped by the phase ¢. It is therefore important to
distinguish between the planar and nonplanar sectors of
perturbative analysis of a noncommutative field theory.
Furthermore, since nonplanar graphs are damped with
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Line-crossing in a non-planar graph

a factor proportional to p* = 6% pg, where ps is an
external momenta, we see that the damping effect is
proportional to p®. This means that the UV divergency
reappears as an IR divergency in the limit p — 0. This
effect is known as UV/IR mixing. The degree of IR
divergency is inverse proportional to the degree of the
original UV divergency.

4. Convergence Theorem

A general convergence theorem for noncommutative
field theory was given by Chepelev and Roiban [6].
Furthermore, they have given a noncommutative version
of the BPHZ subtraction scheme (valid for divergent
planar graphs).

The convergency theorem roughly states that a 1PI
graph G is convergent if, for any subgraph « of G, the
following relation holds

w(y) —ca()d <0, (9)

where c¢(y) is the number of nontrivial homology cycles
of ¥(G), whereby ¥(G) is the genus g 2-surface (with
boundary), on which G may be written. w(G) is the

(commutative) degree of divergency,
w(@) =dL(G) - 2I(G) , (10)

where d is the space-time dimension, L —number of loops
and I — the number of internal lines of the graph G.
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Now, it is important to note that the
noncommutative BPHZ subtraction scheme given in [6]
only works for planar graphs. It is therefore crucial for
the renormalizability of a noncommutative field theory
that divergent non-planar diagrams do not occur. This
is the case if:

e All graphs are at most logarithmic divergent

w(y) <0 Vy. (11)
e Strong symmetries are present in the theory
cancelling ’bad’ divergencies.

Till now we have only considered the UV regime.
However, one must also take into account the IR
behaviour of (nested) nonplanar graphs. I shall not deal
with this problem in this talk. In the following sections,
a few examples of renormalizable noncommutative field
theories are given.

5. The Noncommutative Chern—Simons
Theory in D = 3

A nice example of a renormalizable noncommutative
field theory is the noncommutative Chern—Simons model
in three dimensions. It is given by the action

S, = _% / P2 eyt (4,0, 4,

(12)

%
— A A, x4,),

where €,,, is the 3-dimensional totally antisymmetric
symbol. We have:

e The model is topological:
metric.

Independent of the

e The equation of motion has the simple form F),, =
0.

e The model has a vanishing energy-momentum
tensor, which has the form of a total BRST
variation upon gauge fixing. This again leads to the
existence of an ’odd’ version of the translational
generator P,, the vector-supersymmetry:

Tw=0 =

T;w = {QaA,uu} )
= P, = /d% Top ={Q,V,} . (14)

(13)

228

The vector-supersymmetry is responsible for the
renormalizability of the theory since it leads to the full
cancelation of all divergent graphs. This effect is also
found in the noncommutative case. A full proof of this
can be found in [7].

6. Noncommutative Wess—Zumino Model in
D=4

The Wess—Zumino model is most conveniently treated
in the superfield formalism, where it is characterized by
the classical action

Se1 = 16/dV¢¢+— [/dS¢¢+dS¢¢}

+i8 [/dS¢*¢*q§+/d5¢*¢*¢] , (15)
with dV = d‘fa: D?D?,dS = d*z D?, S = d*z D?. The
fields ¢ and ¢ are chiral and anti-chiral superfields

6 = A+6°0,+0°0,F (16)
¢ = A+60%ps+0%F . (17)
The Wess—Zumino model displays only logarithmic
divergencies. This means that no divergent non-planar
diagrams will appear in the noncommutative Wess—

Zumino model, and one may conclude that the model
is renormalizable [8].

7. Noncommutative Supersymmetric
Yang—Mills Theory

Noncommutative Yang—Mills theory displays
divergencies of higher order than logarithmic. Also,
problematic IR problems occur [6, 9]. A possible
solution is to consider a supersymmetric theory:
Noncommutative Supersymmetric Yang—Mills. Again
it is preferable to consider a superfield formalism:

¢ =¢'T*,

6" = ¢ +6°¢8 + (real) ,

Su = ——tr/dS Fo%F, |

F, = DD (e?Dne?)" (18)

where 7% is a generator of the gauge group and ¢ a real
superfield. Work is still in progress. Due to the presence
of a supersymmetry, we expect to find only logarithmic
divergencies and thus a renormalizable model.
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KBAHTYBAHHS HEKOMYTATUBHUX TEOPIN I1OJISI

u. T'pimwmpyn

Peszmowme

3pobuieHo oryisA pobiT 3 KBAHTYBAHHS HEKOMYTATUBHUX TEODPi mmo-
Js1. 30Kpema, 0cobMBY yBary mpuiijieHo Teopil 30ixkuocTi Here-

nesa # Poiibana. HaBemeno 6arato NpuKIaAiB mepeHOPMYBaHHS
HEKOMYTATUBHHX TEOPi#l moJIs.

KBAHTOBAHUE HEKOMMYTATUBHBIX TEOPUI TIOJISA
u. I'pumwmpyn
Pezwowme

Caenan 0630p paboT O KBAHTOBAHUIO HEKOMMYTATHBHBIX TEOPHUit
nong. B wacTHOCTH, 0CO60€ BHUMAHUE YJI€JIEHO TeOpeMe CXOTUMOC-
tu Yenesesa u Poitb6ana. IIpuBeseno MHOTO npuMepOB IEPEHOPMHU-
POBaHHUA HEKOMMYTATHUBHBIX TEOPHH IIOJIA.
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