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We present the discussion of the energy-momentum tensor of
the scalar ¢?-theory on a noncommutative space. The Noether
procedure is performed at the operator level. Additionally, the
broken dilatation symmetry will be considered in a Moyal—Weyl
deformed scalar field theory at the classical level.

1. Introduction

The aim of this work is to investigate the translation
and dilatation symmetry at least at the classical level
for a noncommutative ¢*-theory. Not much work has
yet been done in this direction, only in [1] and [2] one
finds some scattered remarks concerning the energy-
momentum tensor and its Noether procedure for Moyal—
Weyl deformed scalar field theories. In this paper, we
extend the analysis of [2] and formulate the Noether
procedure for translations already at the operator level.
By the use of the Moyal—Weyl correspondence between
operators and fields, we are able to confirm the results
of [2].

This work is organized as follows. Section 2 is
devoted to some special features of the quantum space
in connection with a ¢*-theory.

In Section 3, we study the construction of the energy-
momentum tensor at the operator level and in a Moyal—
Weyl deformed ¢*-theory.

Finally, in the last section, we investigate the
broken dilatation symmetry of the noncommutative ¢?-
theory.

2. The Quantum Phase Space and the Scalar
Field Theory

We consider the scalar field theory which is described at
the classical level by the following action?:

1 2 A
506 = [ o (0004 50+ 50). @)

where ¢(x) is a real valued scalar field on the four-
dimensional Euclidean space E,. For fields in a Schwartz
space of functions which decrease sufficiently fast at
infinity, we may define a Fourier transformation by

¢@ri/wahham,
&wz/Mfm“mm @)

with ¢(—k) = ¢*(k). In order to generalize a field
theory on an ordinary space to one on a noncommutative
space, we replace the local coordinates z, by Hermitian
operators £, obeying the relations

[-%/u Uul/] =0, (3)

(2, 2,] = iou,

where o0,, = -o0,, is a real invertible matrix.
Consequently, fields on space-time are replaced by
operators. Replacing z, by &, in (2), we obtain

0(0,) = [ ke 3(h) @
With (2), one gets

o(z) = /dk/dx o(x)eik—ike —

1Presented at the XIIIth International Hutsulian Workshop “Methods of Theoretical and Mathematical Physics” (September 11 —
24 2000, Uzhgorod — Kyiv — Ivano-Frankivsk — Rakhiv, Ukraine) and dedicated to Prof. Dr. W. Kummer on the occasion of his 65th

birthday.

2We use the shorthand notations dz := d*z and dk := (gi’)z.
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= / dz / dkT(k)e ™ ¢(z) = / dzA(z)p(x). (5)

¢(Z) is an element of an algebra A, in the sense of [6].

In (5), we have introduced the operators 7'(k) and
A(k) which were originally defined by Balasz et al. [3].
More recently, these operators were also used by Filk [4]:

T(k) = ™, (6)

and by Ambjorn et al. [5]:
Alz) = / dk eihi=ike — / kT (ke (7)

T(k) and A(z) have different useful properties for
practical calculations. In order to list these properties,
let us define the trace operations for 7'(k) and A(z).

For simplicity, we choose the space dimension d = 2
and consider the trace of T'(k) in a first step. The
operator T'(k) has the following properties [4]:

A

TH(k) = T(~h),

T(k)T(K') = e ¥ T(k+ k), (8)

where k x k' := Yo,k k). For d = 2, we have

U[LV:UE[LV:U< _01 (1)>a (9)
and Eq. (3) becomes

[.’%1,.’%2] = 10. (10)
The following remarks concerning the definitions of
traces can be deduced with the methods of [3]. Eq. (10)
looks like the usual commutation relation of ordinary
quantum mechanics between ¢ and p if one identifies
Z1 = ¢ and o = p. The corresponding eigenstates are
defined by [3]:

#i|z) = z|7),

Z3|p) = oplp) (11)
with

(ale') = 8o~ o), [ dolo)al =1,

W) = 50 — 1), / dplp)(p] = 1, (12)
and

(2lp) = ——eir® (13)
x|p —me
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Now it is straightforward to calculate the matrix
elements of T'(k). The result is
<.’E’|T(k‘)|(£”> — (5(](?20' + 7 — xl!)eikl(z’+mu)/2’ (14)

implying that the trace is (with an appropriate
normalization factor)

(k) = 2m0 [ do (a7 (R)le) =

= 270 6(ky0) / dz e = (27)263) (k). (15)

With Eq. (14), we are also able to calculate the matrix
elements of A(z). A short calculation gives

(z'|A(z)]z") = / dk (z'|T(k)|z" e+ =

]. 11?’ —+ .T,'” ) ”
- = _ i(z'—a" s /o
5o ) <a:1 2 > e , (16)
and the trace of A(z) becomes
TrA(z) := 27m/da: (z|A(z)|z) =
= /dxé(a:l —z) =1 (17)

Egs. (15) and (17) confirm the results of [4, 5].
Additionally, one can derive the relations

Te [T (k)T (k)] = (2m)2e " F 5@ (k, + &) =
= (2m)? 6P (k, + K),),

Tr[A(@)A@")] = 6P (2, — 2),). (18)

In order to be complete, we present an alternative way
of calculating the trace of T'(k):

T (k) = 270 / do' (/|7 ()|, (19)
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where |z') is now an appropriate representation of
algebra (3):

[Z, Z0]|2") = ioe|z"). (20)
A possible solution for (20) is

. 1

k) = (24 300, ) 1) (21)

However, in this case, 2’ cannot be identified with z,,
due to the fact that z, and 0, represent 2 x d degrees
of freedom (d = 2). Therefore, we need an irreducible
representation which eliminates the redundant degrees
of freedom.

An irreducible representation is given by (renaming
' = x):

i lx) = a|x),

T = —jo0— . 22
fala) = —io o) (22)
Using the Baker-Campbell-Hausdorff-formula and the
fact that

e"kz%m) =

|z — ok2), (23)

one obtains again (15).
In order to define a scalar field theory at the operator
level, we need a derivation prescription [5—7]:

,0(2) = ~ild} 9(2)] = [ dz0,0(2)A (o) (24)
where &), = 0,,)%, and 0,,0,," = d,,. This definition
implies

[é/u i’u] = 6;“/: [éu: é,,] =0 (25)
Furthermore, we have the Leibniz rule

0u(f(@)g(#)) = D, f(#)g(&) + f(2)Dug()- (26)

Additionally, one can show that one has the following
useful relation:

[0, A(2)] = —9,A(z). (27)
Eq. (27) implies
e I A(z)e P = Az +v). (28)

The existence of such an operator implies that Tr A(z) is
independent of x for any trace operation on the algebra
of operators. (28) gives therefore

Tr A(z) = TrA(z +v) (29)
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and thus one has in consistency with (17):

Tr (% /dwqﬁ )Tr A(z) =

— TrAz) / dz ¢(x) (30)
In normalizing Tr A(z) to one, we get
Tro(2) = [ deo(o) (31)

Now we are able to define the inverse map of (5). In
Filk’s [4] notation, one obtains

2) = / dk ™ Tx [6(2)T (k)] (32)
and, corresponding to Ambjorn et al. [5], one has
$(z) = Tr[¢(2)A(x))], (33)

allowing now to define a Moyal—Weyl product [4, 5] in
the following manner:

(61 % b2)(z) = / k6 T [y (2)6 (2)T ()] =

= Tr [¢1(2)$2(2)A(x)] =

N /dkl/dk2 elbitha)re=hixtag, (k) o (ka).  (34)
Egs. (33) and (34) show that there is a one-to-one
correspondence between fields (of sufficiently rapid
decrease at infinity) and operators. From (34), it follows
also

[z 6156w = [ door@)n(a). (35)

Furthermore one has

Teo1 (0)2(5)] = [ do (61 % 62) (o) (36)

and

Tr[p(2)* / dx (p(z))2. (37)
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One can easily show that cyclic rotation is allowed:

/dx(¢1*¢2*...*¢n)(x):

:/dx(qﬁn*qﬁl*...*qbn_l)(z). (38)

Using now all these definitions, one is able to define a

scalar field theory on a noncommutative space-time at
the “algebra” level as

506) = o (50,00 + 60 + 5 0(0)*) =

=Tr (£9(6(2))) - (39)

With the help of (24), the latter expression may be
rewritten as a “Moyal—Weyl deformed” action:

5016 = [ de (30,65 0,0+ oo+ 01 =
2
— [ s (50u00,0+ 50 + f001) =

- / dz £ (¢(2))

We conclude this section with some remarks concerning
the equation of motion at the algebra level. In order to
see how this works, it is sufficient to discuss the free
kinetic part

(40)

1 . N[ A .
Sheeld] = =3 Tr ([}, 6@, 9(2)]) =
1 A 11AV)2
= 5 Tr (0u9(2))" (41)
The “classical” equation of motion, similar to the

commutative case, is obtained by minimizing the action:

055eeld] _

42
50(2) )
We define the functional derivative as usual [2]:
S(O) .
Seld + 06 — S\ [¢) =: T < 6224)“5] 5¢(m)> . (43)
222

Using cyclic rotation, we obtain

6Sfree[¢]
09(z)

This is the massless free field equation of the theory. The
inclusion of the mass term and the interaction gives the
following equation of motion:

65(0)[¢] _ a3 7 m2 2

Eq. (45) will be used for the construction of the energy-
momentum tensor in the next section. For the Moyal—
Weyl deformed field theory one gets the equation of
motion in a similar way [2]:

35 Wg()]
d¢(x)

= [&}, [, (2)] = —8,0,6(&) = 0 (44)

A3
S0P =0 (45)

= _apap¢(m) + m2¢($)+

(46)

3. Noether Theorem for Translation
Symmetry at the Algebra Level and its
Moyal-deformed Counterpart

In order to define infinitesimal translations at the
operator level, one generalizes the usual transformation
law for a scalar field

0ud(x) = 0,0(x) (47)
to
83u0(2) = 0,0(2) = —il),, $(3)] (48)

in accordance with (24). Since the action

95)

o] = To (50,00)° + -0 + 6@ ) (49
is invariant under translations, we can try to derive a
Noether current in the following way. One calculates the
variation of S§()[4(2)] in two different ways, once using
the equation of motion and alternatively without using
the equation of motion [9].

First we note that, with the help of (24) and
performing cyclic rotations under the trace, one obtains
the following formula for “partial integration”

Te (61(8)8u02(3)) = —Tr (8461 (2)62(3)) (50)
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Then we have

5,50 = Tr(8,8,6(2)9, (&) +

Clearly, one has for the difference
8,5 gl> — 6,5 gl = 0.

This leads to

~ 71,4 N ~
Tr (a,, [5 (9,6(2)0,u (%) + O

(54)

where we have defined the (symmetrized) energy-
momentum tensor at the algebra level

~

Tpu($(2)) == = (0,6(2)0,u $(3)+

N =

+0,0(8)D,0(2)) — 0, L

It is important to note that Eq. (54
3,Ty, = 0 locally.

For the further discussion, we would like to perform
a Wick rotation, i.e. the switch to the Minkowski space-
time My. In order to do this and for reasons to be
discussed below, we assume commutativity in the 4-
component (which is to “become” time) o' = 0, where i
runs from 1 to 3.

Using the Moyal—Weyl prescription, one can rewrite
(55) as®

(55)

) does not imply

Tpu(¢($)) = ( b * 8u¢ + 8u¢ * 8p¢) Mol (0)- (56)

Construction (56) is symmetric, therefore no Belinfante-
procedure is needed [8]. Result (56) is consistent with

359 [g]

0[] = /dm@u¢* o)

= /dm@prH =0.
(57)

We add an improvement term in order to get an
improved energy-momentum tensor which is traceless for
m =0 [8]:

1
TpI/.L =dput é(npuu —0p0u) (¢ ¢). (58)
The improvement term does not contribute to the
divergence of the energy-momentum tensor which is
given by

A
6pr,u = 8prIu = I[[¢a 8u¢]Ma ¢ * ¢]M 7é 0, (59)
where we have introduced the Moyal bracket
[61(2), d2(x)]m = (P1 * P2)(7) — (¢2 * d1)(2). (60)

Result (59) is already given in [2].
From the above condition on o, we also have % = 0
in the Minkowski case. Thus?,

/d%((bl*(z)z*...*d)n)(x):

= /d?’x (P %P1 % ... x pp_1)(x)- (61)
q- (59) implies
/d x0T, —80/d3xT0u /d z0'T, =
= 80 /dSmTUIJ = /dsm %[[QS, au¢]M¢¢ * ¢]M = 0;
(62)

which means that there exists a conserved four
momentum in this case:
P, :=09" / d*z Ty, = 0. (63)

Additionally, 0% = 0 allows to establish unitarity [10].

31n [13], one finds some further useful remarks concerning translation symmetry in deformed quantum field theories.
4Note that the oy, -matrix is no longer invertible in general, and therefore we restrict our attention to the Moyal-deformed field

theory.
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As is well known, in the commutative case, the
generators of the conformal group are given by moments
of the energy-momentum tensor [§]. E.g., in the
commutative case, the conserved current for dilatation
symmetry is given by
Dy, =a"T),. (64)
However, in the noncommutative case, one expects a
breaking of the dilatation symmetry due to the fact
that the energy-momentum tensor is not conserved. As a
simple example, in the last section we study the broken
dilatation symmetry in a Moyal—Weyl deformed field
theory.

4. The Broken Dilatation Symmetry

In this section, we express the dilatation transformation
in terms of a functional differential operator, i.e., we
consider

)

dp(z)
(65

WD—/d$5D¢* /d:z: 142" % 0,)d *

~—

acting on the Minkowskian action S(©)[¢] for a massless
field given by

SO —/dac ( 0,007 — —(¢) ) (66)
Using
o = (2m) /dpe z@(s (),

o) = [ dve in o). (67)

one verifies, with the definition of the Moyal product
(34),

z# « O, P(x) = 20, ¢(x).

Then one gets, using the improved energy-momentum
tensor (58),

(68)

WpS©[¢] =

/dm [ap (z'«T)) +

+5(8%06 = Bgx g) + S0+ 9,9+ 0p — 06 0, 0)

224

+i' @ x (40,0 % (¢)3 — Bu(d)3) } _ (69)

It is straightforward to show that the terms involving
the d’Alembertian in (69) vanish and thus one has

—/da: [8" (a:“ * TpIH) +

WpSO[g] =

A
+ g (40,0 ()] - (70)

~~

=:B

0,(0)1) |

A rather lengthy but straightforward calculation shows
that the breaking B can be written as

w 05019]

B=-2
7 Oohv

(71)
which demonstrates that the breaking is determined
by the deformation parameter o*”. Result (71) can
be understood in the following way. An “infinitesimal”
dilatation

2 =(1+¢)z"

(ex1) (72)

yields the following modified algebra for the operators
e

[2',3"] = i(1 4 2&)o"” + O(e?). (73)
This means that the change in the deformation
parameter induced by infinitesimal dilatations is given
by doH” = 20"”. Therefore one expects the following

relation:

638 28
/dxépd) 7 + dot D =0

(74)
This reproduces exactly results (70), (71).

5. Conclusion and Outlook

In the previous sections, we have shown that one is
able to construct an energy-momentum tensor which
allows to define a conserved four momentum if 6% = 0.
We have also demonstrated that the Noether theorem
for translations exists already at the operator level in
terms of the operators ¢(z). Using the Moyal—Weyl
correspondence between operators ¢(Z) and fields ¢(z),
we have also derived the energy-momentum tensor in
the presence of a Moyal deformed interaction. Our result
confirms the results of [1, 2].
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In the last section, we have also considered the
dilatation symmetry directly in a deformed field theory.
We found that the Ward-identity of dilatation picks up a
breaking proportional to the deformation parameter o*”.
All our considerations are classical, i.e. without inclusion
of radiative corrections. Our investigations may be the
basis to study the trace anomaly at least at the one loop
level. In a further work [12], we will try to give an answer
whether the well-known trace anomaly [11] is modified
in a Moyal—Weyl deformed scalar quantum field theory.
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TEH30P EHEPTII-IMITYJIHCY
Y HEKOMYTATUBHUX ITPOCTOPAX —
JEAKI TIEJATOI'TYHI KOMEHTAPI

A. T'epzoad, H. I'pimwmpyn, X. I'pocce,
JI. Ilonn, M. Illgeda, P. Byakenzaap

Peszwowme

Mu 3anpoIryeMo J0 AUCKYCil PO TEH30P eHeprii-iMITyJIbCy CKaJIsIp-
HOi ¢*-Teopii y mexomyTaTmeHOMy mpocrtopi. ®opmamizm Hborep
peasizoBanuit Ha omeparuBHOMy piBmi. Kpim mporo, posrismayro
MOpYIIEHHsI CHMeTPil MacmTabHUX IepeTBOPEHb y aedOopMOBaHil
ckafsapuiit Teopil nons Moitana — Beiiss Ha KIacuaHOMY piBHI.

TEH30P S9HEPTUU-UMITYVJIBCA
HA HEKOMMYTATUBHBIX ITIPOCTPAHCTBAX —
HEKOTOPBLBIE IIEJATOTNYECKUE KOMMEHTAPUI

A. T'epzoad, H. M'pumwmpyn, X. I'pocce,
JI. ITonn, M. Illeeda, P. Byaxenxaap

Pezwowme

MpI mpursiamaeM K JHCKYCCHH O T€H30PEe SHEPTUU-UMITYJIHCA JIJIsT
CKaJIsApHOH ¢4—Te0pI/II/I B HEKOMMYTAaTHBHOM IpocTpancTse. Pop-
vamm3m D.Herep peanmzoBan Ha oneparopHoM yposHe. Kpo-
M€ 3TOTO, PACCMATPUBAETCSI HAPYIIEHNE CUMMETDPUU MACIITAOHBIX
npeobpazoBaHuil B 1eOPMUPOBAHHON CKAJISPHON TEOPHHU IOJISk
Moitana — Beiing Ha KJIaCCHUI€CKOM yPOBHE.
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