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Nonstandard g-deformed algebras U[I (son), proposed a decade ago
for the needs of representation theory, essentially differ from the
standard Drinfeld—Jimbo quantum deformation of the algebras
U (sor, ) and possess with regard to the latter a number of important
advantages. We discuss possible application of the g-algebras
U, (son), within two different contexts of quantum/q-deformed
gravity: one concerns g¢-deforming of D-dimensional (D > 3)
euclidean gravity, the other applies to 2+1 anti-de Sitter quantum
gravity (with space surface of genus g) in the approach of Nelson
and Regge.

1. Introduction

Construction of quantum gravity belongs to most
fundamental problems of modern quantum theory.
During last decade and a half, new perspective tools
for attacking and solving this problem have appeared
among which we mention, first, the notion of spin
networks (see e.g., [1]) closely connected with loop
quantum gravity as well as with the so-called BF-
type topological theories, and, second, the powerful
methods of quantum groups and quantum algebras
[2 — 5]. Our goal in this contribution is to consider
potential applicability of the so-called nonstandard g-
deformed algebras Uy (so,) introduced in [6] which are
different from the standard (Drinfeld—Jimbo) quantum
deformation [2, 3] of the Lie algebras of orthogonal
groups, while possess a number of rather important
advantages. Here we intend to make a preliminary
steps towards extending the D-dimensional version of
spin networks (more concretely, SO(D) simple spin
networks) to the case of Uy (so,) related formulation. In
the second part of our contribution, we briefly discuss
the appearance of the U,(so,) algebras in the context
of anti-de Sitter 2+1 quantum gravity formulated with
space-part being fixed as genus g Riemann surface so
that n = 2¢g + 2.

2. Simple G = SO(n) Spin Networks

Let us first briefly dwell upon necessary setup concerning
G = SO(n) spin networks.

A generalized spin network associated with a Lie
group G, according e.g. to [7], is defined as a triple
(T, p, I) where

T is an oriented graph, formed by directed edges and
vertices;

p is a labeling of each edge e by an irreducible
representation (irrep) p. of G;

I is a labeling of each vertex v of I' by an intertwinner
I, mapping tensor product of irreps incoming at v to the
product of irreps outgoing from v.

Below, we are interested in the spin networks for
the particular Lie group G = SO(n). Moreover, like in
[7], we consider restricted case of G = SO(n) simple
spin networks. Simple spin networks associated with
G = SO(n) are evaluated as Feynman integrals over the
coset space SO(n)/SO(n — 1), i.e. over the sphere S™" 1.
Simplicity means that only the SO(n) representations
of class 1 (with respect to SO(n — 1)) labeled by single
nonnegative integer /, are employed.

Basic ingredient is the ‘propagator’ expressed in
terms of zonal spherical functions 3 (y), y = cos#, or,
in view of the equality [8]

r(2p)l!

m p=(N-2)/2,(1)

il (cos @) = C7f (cosb) ,

directly through the Gegenbauer polynomials:

— MC(N—Q)/2($.:U) ) (2)

Here the Gegenbauer polynomials C? (x) , I > 0, satisfy
the defining recursion relation

(+1)C}, (2) =
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2(p+ DxCf (z) — 2p+1 - 1)CF_ (2) (3)

augmented with the initial value C}(z) = 1, and obey
the orthogonality relation

/_1(1 + 1)CP(2)CE, (2)(1 — 22)P~ da =

7T (2p +1)
P+ T

= Oim - (4)
Another important property is given by the linearization

formula for the product of two Gegenbauer polynomials,
namely

l+m

crwen = Y et Do+ 20)

| [C(»)]?(g + p)'T(n + 2p)

T(g—1+p)T(g—m+pT(g—n+p)
Tg—1+1I'(g—m+1I'(g—n+1)

Ch(z) (5)

where g = £(I + m + n) and the sum ranges over those
values of n which are of the same evenness as [ +m +n.

One of basic constructs in spin networks is the
so-called ©-graph whose evaluation is given by the
expression

D, m,n:p) ::/_10;’(@051(:5)05(@(1 _22)~}dg. (6)

The result of evaluation is

2'72Pn T(g +2p)
[F(p))* T(g+p+1)

D(l,m,n;p) =

I'(g—m+pl(g—n+p)
Fg—1l+1)I(g—m+1DT(g—n+1) "

(7)

Using (6) one easily deduces the recurrence relation for
the D(l,m,n;p) in the form

I+1 w+1-1
—D(l+1 —— Dl -1 ip) =
p+l (+ msp)+ p+l ( ,m,S,p)
1 2 —1
2 pm,s+ 1p) + 222 pm, s—13p) (8)

p+s p+s

(remark that in 4 dimensions all the multipliers become
equal to 1).

Thus, O-graph ) (mi,my,ms3) is nothing but
integral of the product of three normalized propagators
defined in (2):

a(N) (m17 ma, mS) =

214

p)I'(g —m; +p)
p+1Fg m; +1)°

_ T(g+2p)l ﬁ

S T(g+p+1 ©)

2:1

where g = (my + ma + mg3)/2 is an integer, g — m; > 0,
i=1,2,3,and p= (N —2)/2.
For N =4,

0@ (my, my,ms) = (my + 1)(my + 1)(ms + 1). (10)

There exist a number of other results concerning
(simple) SO(n) spin networks, for generic situation as
well as for the particular cases of n = 3,4, which we
however shall not discuss here further.

3. @g-Deformed Analog of Spin Networks from
g-ultraspherical Polynomials

To deal with g¢-deformed case we need some facts
concerning g-ultraspherical polynomials. These are
defined through the following recursion relations:

(1= ¢")C(x; Blq) = 22(1 — Bg" ) Cri (3 Blq)
—(1=8%¢"")Cns(x;Blg),  (n>2), (11)
along with special values

Co(z;Blg) =1,  Ci(z;Blg) =201 = B)z/(1—q). (12)
With 8 = ¢, the "classical"limit ¢ — 1 yields

Cu(a: Bla) 5 C)(). (13)

The explicit expression for the
polynomials is [9] as follows:

g-ultraspherical

n

i(n72k)€
(z: Blq —
| 2:: q q n—~k
B D)n_ino - 1 1 1,—2if
= ey "BiBTa Mq,q8 e 14
(4 4)n (e - (4]
In this formula, the notation (a;q),, means:
1, n=20
(@;¢)n = { (1—-a)(1—qa)...(1 — q"'a), n > 1. (15)

It should be noted that it is also possible to
present C,(z;f|q) in the form which employs basic
hypergeometric function 4®5 or 3@, see [9, 10].

Orthogonality relations for the ¢-ultraspherical
polynomials are of principal importance. They are given
by the relation

/Cm(cos 0; Blq)Cr(cos 8; Blq)Wa(cos 8|q)dd =
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6mn

hn(Blq)’

where the weight function and the normalization factor
are as follows:

(16)

240 ,—2i0.
(e Y € ) q)OO
(B, Be=7; g)c”

~ (4.8% 00 (q;0)n (1 = Bg™)
MnB19) = 325 B @) P 00— B)°

Ws(cosb|q) = (17)

(18)

with

(a1,a2; @)oo = (a1;9) o0 (A2 @)oo »

oo

(a; @)oo := [J (1 — ag®).

k=0

Linearization formula is another important fact about
g-ultraspherical polynomials. It is given by the following
Rogers’ formula [9]:

C(z; Bla)Cr (3 Blq) =

min(m,n)
= Z Am,n,k(ﬁ|q)cm+n—2k(x;,8|Q) (19)
k=0
with the notation
B Q)m—k (B5Q)n—r (B50)k
Amn =
mok(Bla) (G Dt (@ Dk (GO
(@ Dmtn—2k B Qmin—r 1 —Pgm T2 (20)
(ﬂ2; q)m+n72k (BQQ q)m+nfk 1- ﬂ

Now it is not hard to obtain the result for the ¢-deformed
analog of ©-graph (9), namely

D,(m,n,s,\) =
:/@mwm@mmmammm%mwmwz
0

_ 27 (B,84:0)oc (8% 0)g (B: @) g—n (B3 0)g—m (85 )g—s (21)

(4, 8% 0) 00 (B4:0) (45 @) g—n (05 @) g—m (45 @) g—s

where m +n+s =29, g>m, g>n,g>s. Notice the
obvious symmetry under exchanges: m < n < s <> m.
Recursion relation for D, is obtained in the form

1 _ qm+1

WDq(m —+ ].,’I’L, S, A)+
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1 _182qu1
+WDq(m — 1,77,,8,)\) =
1 _qs-l—l
= WDq(m,n, S + ]., )\)"‘
1 _ﬂ2q871
+WDQ(TTL,TL,S — 1,)\) (22)

Likewise, one can get evaluation for other particular (g-
deformed analogs of) spin networks.

4. Covariance with Respect to g-algebras

Our main concern here is a possible relation of this
stuff to quantum groups and/or g¢-algebras which
correspond to the orthogonal Lie groups SO(n) and
their corresponding Lie algebras. As it was shown by
Sugitani in [11], zonal spherical functions associated
with a particular realization Sév of quantum spheres are
proportional to the g-ultrapsherical polynomials, that is

(g-)zonal spher. func. <> C£N72)/2(Y; 7).

To this end, one starts with standard U,(so,) and
constructs a g-analog of the coset SO(n)/SO(n — 1) by
means of Uy (so,) (corresponding to SO(n)) and a coideal
(corresponding to SO(n — 1)):

( q2—1
<621 ey En,y f21 KAL) fn7011927 qg—1 >

for Bp(n > 1) and D,(n > 2) series,

Jg =< (23)
(#1) for N=3
\ <91,62, %) for N=4.
Here

Scex+ (<) g2 fo fufu o ol
for B,, (n > 1) series,

scer+(=1)"?t g fa o fuifafao2 e fofa
for Dy, (n > 2) series,

)

1=

s-er+t-q/?qfi (N =3),

\S-€1+t'q61f2 (N:4),
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(4027 i+ (~1)" s - e+ enen - eser
for B, (n > 1) series,

Or:=qt-qfi +(—1)"25-e3 - ep_1€nen_o--e2e

for D, (n > 2) series,

Lt ¢ fits-ea (N=4),

(25)

As follows from the results of [11], this left coideal
subalgebra coincides with the nonstandard g-deformed
algebra Uj(so,) from [6]. Note also that this same
nonstandard (or twisted) g-deformed coideal subalgebra
arises [12, 13] when one constructs a quantum analogue
of the symmetric coset space SU(n)/SO(n).

5. The g-algebra U, (so,) (Bilinear
Formulation)

Along with the definition in terms of trilinear relations
originally given in [6], the g-algebra U, (so,) may be
equivalently defined in terms of ‘bilinear’ formulation.
To this end, the generators (set k >1+1, 1< k,l <n)

+ _ + _
Ik,l = [IlJrlJ’Ik,H-l]lIil =

1

_ 12 + 27+
=q*"/ D1l — g* P ERE (AW

are introduced together with Iny1x = Iy, = Iy -
Then, the bilinear formulation of the g-algebra Uy (so,,)
reads:

s

LNe=1t, [L5, I 1. =1},

Im>? km?
[ Ih )y =1 it k> 1>m,
[I,j},I;gp]:O if k>I>m>p or k>m>p>I; (26)

(L i) = (a—a~ VIS L — T8 T it k>m>1>p.
Analogous set of relations exists which involves I;; along
with ¢ = ¢! (denote this “dual” set by (26')). In the
‘classical’ limit ¢ — 1 , both (26) and (26') reduce to
those of so,,.

For instance, at n = 3, the g-algebra U,(so3) is
isomorphic [14] to the Fairlie — Odesskii algebra [15, 16]
(recall that the g-commutator is defined as [X,Y], =
¢'?XY — ¢ 1PV X):

(o1, Iso]y = I, B2, I3i]g = o1, (I, Inn]g = Iso; (27)
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at n = 4 the g-algebra U,(so4) in addition involves:

[1327-[43]q = Iera [1937]43]q = Ijla
[Lis, I5)g = Is2,  [Lus, Iji]q = I35,
[1437]32]11 = Iys, [Iﬁv-[;—l]q = lys,

[‘[21’ IZ;]Q = Ijl:
[IZ_Q’ Izﬁ]q = I»,
[IZL IQl]q = IZ—Za

Lz, Io1]) = 0, [I32,I;] =0,
(15, I51) = (g — ¢ ) (Ior Lus — Iso 1),

The first relation in (27) is viewed as definition for third
generator I?:"l; with this, the algebra is given in terms
of g-commutators. Dual copy of Uj(so3) involves the
generator Iy, = [Is1, I32],-1 which enters the relations
same as (27), but with ¢ — ¢~!. Similar remarks apply
to the generators I, I, as well as (dual copy of) the
whole algebra Uy (sos).

6. Deformed Algebras A(n) of Nelson and
Regge

For (2 + 1)-dimensional gravity with cosmological
constant A < 0, the Lagrangian density involves spin
connection wgp and dreibein e, a,b = 0,1, 2, combined
in the SO(2,2)-valued (anti-de Sitter) spin connection
wap of the form

Wab

AB — _1.b )
e’ 0

and is given in the Chern—Simons (CS) form [17, 18]

%(deB — gwAF A wFB) AwCPeanen.

Here A,B =0,1,2,3, the metricisnap = (—1,1,1,—1),
and the CS coupling constant is connected with A, so
that A = —z1;. The action is invariant under SO(2,2),
leads to Poisson brackets and field equations. Their
solutions, i.e. infinitesimal connections, describe space-
time which is locally anti-de Sitter.

To describe global features of space-time, within
fixed-time formulation, of principal importance are the
integrated conmections which provide a mapping S :
m1(X) — G of the homotopy group for a space surface
¥ into the group G = SL;(2,R) ® SL_(2, R) (spinorial
covering of SO(2,2)) and thoroughly studied in [19]. To
generate the algebra of observables, one takes the traces

cta) =ct(a™h) = %tr[Si(a)]
where

acm, STeSLi(2,R).
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For g = 1 (torus) surface X, the algebra of (independent)
quantum observables has been derived [19], which
turned out to be isomorphic to the cyclically symmetric
Fairlie — Odesskii algebra [15, 16]. This latter algebra,
however, is known to coincide [14] with the special n = 3
case of Uj(so,). So, natural question arises whether for
surfaces of higher genera g > 2, the nonstandard ¢-
algebras U, (soy,) also play a role.

Below, the positive answer to this question is given.

For the topology of spacetime ¥ x R (X being
genus-g surface), the homotopy group m(X) is most
efficiently described in terms of 2g + 2 = n generators

t1,t9, ..., 2942 introduced in [20] and such that
2g9+2

titg - tagpr =1, tots,.ntygn =1, [[ti=1
i=1

Classical gauge invariant trace elements (n(n — 1)/2 in
total) defined as

Qi = %TT(S(titH_l R tj_l)),
generate concrete algebra with Poisson brackets,
explicitly found in [20]. At the quantum level, to the
algebra with generators (28) there corresponds quantum
commutator algebra A(n) specific for 2 + 1 quantum
gravity with negative A. For each quadruple of indices
{4,1,k,m}, j,l,k,m =1,... n, such that

S € SL(2,R), (28)

i<j<m<k<i, (29)

the algebra A(n) of quantum observables reads [20]:

[@mk, aji] = [amj, ar] =0,
[aji, ar] = (1 — %) (@i — anag),

) (30)
[ajk; arm] = (% — D(@jm — ajkarm),

[ajk, aim] = (K — £)(aj1akm — ariajm).

Here the parameter K of deformation involves both «
and Planck’s constant, namely
4a —ih 1

= lotih Q =30 A <O.
Note that in (28) only one copy of the two SL.(2, R) is
indicated. In conjunction with this, besides the deformed
algebra A(n) derived with, say, SL4 (2, R) taken in (28)
and given by (30), another identical copy of A(n) (with
the only replacement K — K ') can also be obtained
starting from SL_(2, R) taken in place of SL(2, R) in
(28). This another copy is independent from the original
one: their generators mutually commute.

(31)

ISSN 0508-1265. Yxp. pis. orcypn. 2002. T. 47, N 3

7. Isomorphism of the Algebras A(n) and
U, (son)

To establish isomorphism [21] between the algebra A(n)
from (30) and the nonstandard g¢-deformed algebra
U, (s0n) one has to make the following two steps.

— Redefine: {KI/Q(K — 1)_1}aik — A,

— Identify: Aix — Lig, K —q.
Then, the Nelson—Regge algebra A(n) is seen to
translate exactly into the nonstandard g¢-deformed
algebra U, (so,) described above, see (26). We conclude
that these two deformed algebras are isomorphic to each
other (of course, for K # 1). Recall that n is linked to
the genus g as n = 2¢g+2, while K = (4da—ih)/(4a+1ih)
with a? = —1.

Let us remark that it is the bilinear presentation
(2) of the g-algebra Uj(so,) which makes possible
establishing of this isomorphism. It should be stressed
also that the algebra A(n) plays the role of
“intermediate” one: starting with it and reducing it
appropriately, the algebra of quantum observables
(gauge invariant global characteristics) is to be finally
constructed. The role of Casimir operators in this
process, as seen in [20], is of great importance. In this
respect let us mention that the quadratic and higher
Casimir elements of the g-algebra U, (so,), for ¢ being
not a root of 1, are known in explicit form [13, 22] along
with eigenvalues of their corresponding (representation)
operators [22].

As it was shown in detail in [19], the deformed
algebra for the case of genus g = 1 surfaces reduces
to the desired algebra of three independent quantum
observables which coincides with A(3), the latter being
isomorphic to the Fairlie — Odesskii algebra Uj(soz).
The case of g = 2 is significantly more involved: here
one has to derive, starting with the 15-generator algebra
A(6), the necessary algebra of 6 (independent) quantum
observables. J.Nelson and T.Regge have succeeded [23]
in constructing such an algebra. Their construction
however is highly nonunique and, what is more essential,
isn’t seen to be efficiently extendable to general situation
of g > 3.

Our goal in this note was to attract attention to
the isomorphism of the deformed algebras A(n) from
[20] and the nonstandard g-deformed algebras U, (son)
introduced in [6]). The hope is that, taking into account
a significant amount of the already existing results
concerning diverse aspects of Uj(so,) (the obtained
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various classes of irreducible representations [6, 14, 24—
28] and others, as well as knowledge of Casimir operators
and their eigenvalues depending on representations,
etc.) we may expect for a further progress concerning
construction of the desired algebra of 6g — 6 independent
quantum observables for space surface of genus g > 2.

The research described in this publication was
made possible in part by Award No. UP1-2115 of the
U.S. Civilian Research and Development Foundation
(CRDF).
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3ACTOCYBAHHS ¢-AJITEBP U (son) 10 KBAHTOBOI

T'PABITAIIII: TIPO ¢-IE@OPMOBAHUN AHAJIOT
SO(n)-CIIIHOBUX CITOK

O. M. Tlaspuaux
Pe3zwowme

Hectangaprai ¢-medopmoBani anrebpu U(;(son), 3aIIpPOIOHOBAHI
JecsiTh POKiB TOMy Jjisi moTpebd Teopii mpejcTaBjieHb, iCTOTHO
BiApIBHAIOTHCA Bix ctangapTHOl gedopmarii Apindensaa i JIxim-
60 anrebp U(son) i MaroTh mepex OCTaHHIME BaskJuBlI mepeBarm.
Mu BuBYaEMO MOXKIHBE 3acTOCyBanHs g-anreGp U, (son) y Box
pi3nux koHTeKcTax. OgUH 3 HEX CTOCYETHCH ¢-medopmyBanas D-
umiprol (D > 3) eBkuimoBoi rpasitanil Ha OCHOBI y3araJbHEHHS
dopmamizmy cminoBuX ciTOK, iHmmi mae 3acrocyBanusa a0 (2+1)-
BuUMIpHOT aHTHAECITTEPIBCHKOI KBAHTOBOI rpasitanii (3 pimarOBO0O
moBepxHeIo poay ¢) y miaxoxai Hemnscona i Pemke.

NPUMEHEHUE ¢-AJICEBP U/ (s0,) B KBAHTOBO
TPABUTAIINN: O ¢-TECOPMUPOBAHHOM
AHAJIOTE SO(n)-CIIMHOBHIX CETEN

A. M. TI'aspuaux
PeszwowMme

Hecranaapribie g-gedopmuposannbie anre6po U, (son), npesio-
JKEHHBIE JeCATh JIeT TOMY HAa3aJ B CBA3W C NOTPEOHOCTSIMH TEO-
puu TpeaCTaBJIeHNH, CyNIeCTBEHHO OTJIMYAIOTCA OT CTaHIAPTHOI
nedopmanun Ipundensaa u JIxumbo anre6p U(so,) u obnama-
IOT PAJOM HIPEUMyIeCTB. Mpr U3yvaeM BO3MOXKHOE IIPpUMEHEHUE
g-anrebp Ut/z (s0n) B ABYX pasnuduHBIX KOHTeKCTaX. OJUH U3 HUX Ka-
caerca g-nedopMupoBanus D-mepuoi (D > 3) 9BKINI0BOI rpaBu-
TalM¥u HA OCHOBe 00001enusi popMain3Ma CIUHOBBIX CeTei, Apy-
roit — npumenenus K (2+1)-MepHO# aHTHECATTEPOBCKOI KBAHTO-
BOU TpaBHTAIINU (c PHUMAHOBOM NMOBEPXHOCTBHIO POJA g) B IOAXOJ€e
Henbcona u Pemxe.
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