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The analysis of the isospin formalism is carried out in order to
study a few-nucleon system with high and controlled precision.
The commonly used isospin formalism is shown to give the
unreasonable complication of the total wave function and to
increase the number of equations for spatial components. Using
the example of three nucleons with the general central exchange
NN-interaction potential, the complete equivalence is grounded
for two approaches with and without the isospin formalism. New
sets of equations are obtained for the systems of three nucleons
with total spin S = 1/2 and four nucleons with total spin S = 0.
Optimal variational schemes are developed with the use of the
Gaussian basis for a precise studying of the main properties of a
few-nucleon system. For the three-nucleon systems, the binding
energies, r.m.s. radii, density distributions, and formfactors are
calculated with high and controlled precision within the proposed
approach. The qualitative detailed analysis is carried out for the
structure peculiarities of the three-nucleon systems. Advantages
of the proposed approach without use of the isospin representation
are demonstrated. The obtained results are of superior accuracy
in comparison with the known ones and give new possibilities
for constructing the realistic variants of nuclear potentials for a
complete description of all the main low-energy parameters of
few-nucleon systems.

The latest achievements in precise variational
approaches [1-3] for few-particle systems of various
physical nature put forward the problem of elaborating
the optimal variational procedures to achieve high-
precision results for the main characteristics of the
bound states with a minimal number of the variational
basis functions involved [4]. The possibilities to achieve
a high precision in calculations of the nuclear system
parameters are connected both with the finite number of
internal spatial coordinates of nucleons and the limited
number of independent components of the total wave
function [2-6]. In the standard scheme commonly used
for light nuclei in the framework of the isospin formalism
treating nucleons as identical particles, one has to deal
with a complicated system of equations for a number of
components of the wave function in order to take into
account a coupling of the components with different
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total isospin in the case of central exchange nuclear
potentials and the Coulomb interaction involved. In
particular, it is necessary to solve a system of six
equations for spatial components of the wave function in
the doublet state of 2He, and one has twelve equations
for “He. At the beginning of the theoretical semi-
qualitative study of nuclei, some rough approximations
were assumed for the structure of wave functions (see
[7-9]), and the total number of the wave function
components was not too important. But precise and
reliable calculations, with all the spatial components
of the wave function taken into account, are already
confronted by nontrivial difficulties, which requires
the optimization of calculational schemes even for the
above-mentioned light nuclei. Precise calculations in the
framework of the standard isospin formalism are by far
more complicated for heavier nuclei.

In the present work, we put forward an approach
[10,11] free from the isospin formalism and show the
general and complete equivalence of the proposed
approach to the prevalent standard isospin one by using
the example of a three-nucleon system. The obtained
system of equations for the spatial components of the
wave function appears to be of rather simple structure
and thus has significant advantages in comparison with
the standard isospin scheme in order to carry on precise
calculations for few-nucleon systems.

1. Consider the 3He system of three nucleons in the
doublet state (with spin S = 1/2) in the framework
of the standard isospin approach with conventional
assumptions about the central exchange NN-potentials

A

V (i,7) = Vi1 (rij) Ps (0) Ps (1) + Vi (1) Ps (0) P (1) +
+V31 (rij) P (0) Ps (1) + Vag (ri;) P (0) Py (1) +

Tij

containing the corresponding spin and isospin projection
operators onto the triplet and singlet states, as well as
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the two-nucleon isospin projection operator T5 (i,j) =
= 2 (r3(i) + 73(j)). The (2p,n) system in the doublet
state (with spin S = 1/2 and the spin Young
scheme [2,1]) is in a mixed isospin state (with both
T = 1/2 and T = 3/2) and has the projection of
isospin T35 = 1/2. In the isospin approach, the total
antisymmetric (in nucleons) wave function of the (2p,n)
system is represented in terms of spin ( and isospin
x (as well as spin-isospin &) wave functions and has
six spatial components corresponding to four different

1
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where K is the kinetic energy operator for three nucleons
of equal masses, and the complete set of the spatial
Young schemes (symmetric [3] and mixed [21]) for
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After calculating the spin-isospin matrix elements of
the total Hamiltonian, one obtains the system of six
equations for the spatial components of the wave
function (or the set of four equations [8,9] in the case
of the (2p,n) system without Coulomb interaction):

— ") E (P = () X3/2-(2)

1
3 (U + Uy +

Usy — Uiz + Upy) 0" + (Usy — Uy — Uy + Upp) ¥'] -

1
3 U +U") =0,

s 1
(U33+U31+U13+U11)+3U }@ZJ Z[(U§3_U§1—U{3+U{1)¢’—(U?’)I3_U - U +UN)Y" ]+

( U’ I—UéIQO”):O,

1
UL ¥ - 3 W - U) +

+ (Ui = Ugy) ¢ +

— (Ui — Ugy) ¢"] +

(3)

the potentials (both nuclear and Coulomb) looks as
follows:

Us=Vv (Tlg) +V (7‘13) +V (TZS) ’
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ol%

U = (=V (r1i3) +V (r23)),

U" ==V (r2) + % (V(r13) +V (ra3)) - ()

The last two equations in (3) appear due to the
Coulomb interaction potential mixing for the states with
different total isospins (the total projection of the isospin
T3 = 1/2 being fixed). Neglecting the components ¢’
and ¢"” as well as the Coulomb interaction matrix
elements in (2), (3), one obtains the standard system
of equations in the isospin representation for a °H
nucleus (in the doublet state both in spin (S =
1/2) and isospin (I' = 1/2) ). The system of

__1 _1 1 _1 0 _ 1
ol 2v3 2 23 2 V3
) _1_ 1L 1 1 0 —_L
o) 2v3 2 2v3 2 V3
1 1 1
A s 0 -5 0 0 -5
o 1 1 1 1 1
o A R S A A
'2’ _1 1 _1 1 1 0
2 2V3 2 2v3 V3
! 1 1 1
; 0O -5 0 5 u O

As the obvious result of this transformation, one has
only two (from six) independent components, while the
rest components are expressed in terms of these two ones
using also the coordinate permutations. In particular, we
express all the components from the new system (6) in
terms of ¢4 (123) and ¢4 (123) as follows:

6, 128) = —2o4 (321) + 225 321).

V3

v (123) = 24, (321) + 104 (321),

1 3
8, (123) = — 2, (132) - Y241 132).

3 1
y (123) =~ (132) + Lot (132). ®)
Thus, the complete solution of the three-nucleon

problem and finding the total antisymmetric function (2)
using six spatial components (5) need only two equations
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equations (3) for He is the basic one for precise
calculations with regard for all the details of the total
antisymmetric wave function. We show the system
of equations (3) for 3He to be equivalent to a
more simple one. We introduce, instead of six spatial
components,

,¢}s’ ’(/)I’ ,¢}”’ ,¢}a’ (p/’ (p” (5)
the following new ones:
P15 oy B3, 1, B3, O, (6)

in accordance with

for ¢4 and ¢4 (instead of six ones). Further, we use the
denotations ®; = ¢4 and P, = ¢ .

The same two components ®; and $» may serve as
basic ones in the equivalent approach without any use of
the isospin representation, where a proton and a neutron
are considered to be different particles, the total wave

function of *He (in the doublet state) being expressed as

U (p1,p2,n3) = ('®1 (p1,p2,n3) + ("' ®2 (p1,02,n3), (9)

where (' and (" are two components of the spin wave
function with S = 1/2, ®; (p1,p2,n3) is a symmetric
function, and ®» (p1, pa,ng) is an antisymmetric one in
identical protons. It is suitable to express the central
exchange NN-potential (1) in the following equivalent
form without explicit introduction of isospin:

Anucl (Z;J) =
= [Vt (rij) Ps (o) + Vi* (rij) Pi (0)] (1 + Py) /24

+[Ve (i) Pa(0) + V7 (rij) Pi(0)] 1= P) /2, (10)
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where P, is the Majorana exchange operator of a
permutation of spatial coordinates. Note the well-known
relations to be held for any charge-independent nuclear
potential for any pair of nucleons:

Vis=V,", Ve =V,

e?
K+—+V# —E| &, (123) +
[ * T12 * s(ep) (1“12) ] 1

DS Wi [1id

z] 13,23 +,—

25 S

1j=13,23 +,—
il € Bl ®, (12 1
ot Vi (o) — B 82028 4+ ¢ >0 3|V,
1j=13,23 +,—

DI

1j=13,23 +,—

1)+ [ & (i) =

where we take into account the difference in masses
between a proton and a neutron in the kinetic energy
operator K = ﬁ (7 + p3) + 53-p3- We generalize the
obtained system of equations to the case of different
neutrons and protons with charge-dependent nuclear
interaction potentials as well as to the case of different
interactions in odd and even orbital partial states. Thus,
Eqgs.(12) for the (2p,n) system contain generally six
different nuclear potentials. In the case of a *H nucleus
(with total spin S = 1/2), we have the system of
two equations similar to (12), but without Coulomb
interaction and with the exchanged indices n < p in
all the potentials. We stress once more that the system
of two equations (12) is complete for solving the three-
nucleon problem for the total spin S = 1/2. In the
general case, there are eight independent components
of the nuclear interaction potential to determine the
three-nucleon system properties in all the spin states.
The following relations are to be held in the case of a

2
[K+—+V (ri2) + V1,

719 (pp) s(nn

> [

ij=13,14,23,24 +,—

> .Y

ij=13,14,23,24 +,—

) (raq) — E} ®, (1234) +
1
8

+§ (ri) = Vi

it [Vi e

s(np)

132

Vit ) (i) [LE P (i)] @1 (123) =0,

Vin=Vy, V=V (11)
Ultimately, the set of two equations for the three-
nucleon system (2p,n) with spin S = 1/2 looks as

follows:

) (1ig) + Vi (rig) | [L£ P (i5)] @1 (123) +

1yt [ oy (i) = Vit (rij)] [1+ P (if)] ®2 (123) = 0,

(ris) + 3Vihny) (i) [1 % P (i5)] 2 (123) +

(12)
charge-independent potential:
+ — + _yt = +
VS(”” o VS(:D:D Vs = Vi3, Vt(np) = Va1,
Vi = Vi, Vt(m) Vi = Vieuny = Vas: (13)

Within the proposed approach, we have one equation
for the spatial part of the wave function in the quartet
state (S = 3/2) of the three-nucleon system. For a four-
nucleon system within the same approach without use
of isospin, we have one equation for the spatial wave
function in the case of spin S = 2, a system of three
equations for S = 1, and a system of two equations for
S = 0, correspondingly to dimensions of the respective
Young schemes for the spin functions of four nucleons.
We present here, as an example, the system of two
coupled equations for the spatial wave function of *He
in the S = 0 spin state in the general case of central
exchange charge-dependent NN-potential:

V(i) +VEL (rij)] [1+ P (i5)] 1 (1234) +

()] [L % P (i)] @2 (1234) = 0,
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~ 62 _ _
[K + a + Vvt(pp) (7'12) + V;f(nn) (T34) - E:| (I)Q (1234) +

1
3
ij=13,14,23,24 +,—

V3
+5
ij=13,14,23,24 +,—

2. For studying the three- and four-nucleon systems
3H, ®He and *He on the basis of Eqs.(12), (14), we
develop optimized variational procedures with the use
of a Gaussian basis (see also [5,6]) and calculate all the
main parameters of bound states with high precision.
Here, we present only the results of calculations for
the three-nucleon nuclei *H (Table I) and 3He (Table
II) with some NN-potentials (ATS3 and Minnesota
see [3], K2 and EH see [5,6]). All the results are
given with the accuracy of one unit in the last digit
with great probability (the exact values of energy are
lower, of course, but not more than by 1 KeV). It is
important that a high precision of calculations can be
achieved within the proposed approach on the basis of
Eqgs.(12), (14) with use of the optimization schemes of
variational calculations at a comparatively small number
of Gaussian basis functions involved. In particular, we
have used not more than 60-100 Gaussian basis functions
(for ®; and ®, together) in the ultimate calculations of
ground state wave functions. Our results are of higher
precision in comparison with the best known results
[3] for the same potentials, being obtained with the
significantly less number of variational Gaussian basis
components. For Minnesota potential, we have 8.386(1)
MeV as the ultimate result for the binding energy of
SH (with a possible error less than 0.001 MeV) in
comparison with 8.380 MeV in [3], and we have 8.765(1)
MeV for the same nucleus with the ATS3 interaction
potential in comparison with 8.753 MeV in [3]. It is
mainly due to the advantage of system (12) to have only
two coupled equations instead of generally six ones in
(3). The hierarchy of the basis components considered
is as follows: the number of the basis components in the
symmetric channel (®1) is generally about three times
greater as compared to that in the antisymmetric one
(®,) for various considered potentials. Such a regularity
helps us to build the optimal scheme of increasing
the dimension of a Gaussian basis in order to achieve
a prescribed accuracy with the least number of basis
components.
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S 0V, (i) = Vit (rig) | [ P (i5)] @1 (1234) = 0.

S Vit (i) + 3V, (r3p)] [1 % P (i)] @2 (1234) +

(14)

In our calculations (using the values e? = 1.44

MeV-fm, and h*/M = 41.47 MeV-fm?), we consider
the following cases: 1) the spinless approximation (see
[3,4]) with the interaction potential being a half of
the sum of the triplet and singlet potentials; 2) an
approximation with only the component ®;taken into
account (P2 =0); 3) the complete calculation with
a pair interaction in even orbital states (prevalent
and commonly used); 4) the complete calculation with
regard for different values of the proton and neutron
masses (M, # M,). An approximate "rule of intervals”
is found for the calculated values of energies (there
are roughly the same intervals in energy between the
first three approximations), which enables one to build
efficient schemes of calculations with the use of some
approximations. Note that the more the difference
between the triplet and singlet potentials and the value
of a short-range repulsion, the more is the difference
between the energy in the spinless approximation and
that from the complete calculation. Such regularities are
also useful when solving the rather difficult problem of
finding the absolute minimum of an energy functional
in the multidimensional space of nonlinear parameters
within the variational approach (the number of local
minima with close values of energy is rather large). A
rather efficient way of optimal increase in the number
of basis components and determination of the absolute
minimum appeares to be the use of a number of methods,
in particular, the stochastic procedure, the regular
method with different ranges for nonlinear parameters,
removing the minor components, etc. The use of various
methods gave us a possibility to achieve the results with
high and controlled accuracy with the optimal number of
basis components. For three- and four-nucleon systems
with the Minnesota and ATS3 potentials, our results
are of higher precision in comparison with the results
from [3], and they are obtained with a less dimension
of the basis. This is mainly the result of the use of a
more simple system of equations (12) without isospin
representation.
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T a b 1 e I. Calculated energies and r.m.s. radii for >H nucleus. Rp, R,, R, are the proton, neutron, and mass density

distribution r.m.s. radii, respectively

Approximation W AT-S3+ ATS3 Minnesota K2 EH
Energies, radii
—Fo, MeV 6.699 6.699 6.896 8.307 7.048
<binless R, fm 1.738 1.738 1.730 1.823 1.721
b —E*, MeV 0.234 0.234 0.264 0.721 0.284
R*, fm 12.5 125 12.7 11.8 13.0
—Eoy, MeV 7.491 7.616 7.561 8.438 7.352
B — 0 Ry, fm 1.614 1.591 1.613 1.779 1.637
2= Rn, fm 1.758 1.753 1.761 1.858 1775
R, fm 1.712 1.701 1.713 1.832 1.730
—Ep, MeV 8.491 8.765 8.386 8.484 7.718
cotal Rp, fm 1576 1.546 1.586 1.784 1.637
Ry, fm 1.749 1.733 1.763 1.872 1.800
R, fm 1.693 1.673 1.706 1.843 1.748
—Eg, MeV 8.495 8.769 8.389 8.488 7.722
Ry, fm 1576 1.546 1.586 1.784 1.637
total (Mp # Mn) Rn, fm 1.748 1.733 1.762 1.871 1.800
R, fm 1.693 1.673 1.705 1.842 1.747
5] —Eg, MeV - 8.753 8.380 - -
Rm, fm - 1.67 1.698 - -

experiment

—Ep (3H) = 8.481 MeV,

R, (*H) = 1.57 fm

T a b 1 e II. Calculated energies and r.m.s. radii for 3He nucleus. Rpy, Rny R

density distribution r.m.s. radii, respectively

are the proton, neutron, and mass

Approximation W AT-S3+ ATS3 Minnesota K2 EH
Energies, radii

“Eo, MeV 5.008 5.098 6.165 7714 6.327

<oinless Rp, fm 1.772 1.772 1.766 1.854 1.755

P Ry, fm 1.756 1.756 1.750 1.839 1.740

Ry, fm 1.766 1.766 1.760 1.849 1.750

—Eo, MeV 6.833 6.963 6.882 7771 6.673

B — 0 R, fm 1.790 1.784 1.796 1.892 1.812

2 Ry, fm 1.632 1.608 1.632 1.796 1.657

Ry, fm 1.739 1.727 1.743 1.860 1.762

—Eo, MeV 7.833 8.110 7.711 7.821 7.047

cotal R,, fm 1.780 1.763 1.798 1.909 1.842

ota Ry, fm 1.593 1.560 1.605 1.802 1.659

Ry, fm 1.720 1.698 1.736 1.874 1.783

—Eo, MeV 7.826 8.103 7.706 7.816 7.041

Ry, fm 1.781 1.764 1.799 1.909 1.843

total (Mp # Mn) Ry, fm 1.593 1.561 1.605 1.802 1.659

Ry, fm 1.721 1.699 1.736 1.874 1.784

experiment

—Eo (*He) = 7.716 MeV,

Ry (*He) = 1.70 fm

Some physical conclusions should be mentioned.
The numerical results for r.m.s. radii (of the proton,
neutron, and mass density distributions) show clearly
the peculiarities of the ®H and 3He structures. In
particular, the proton distribution r.m.s. radius is
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essentially less than that for the neutron one in the case
of a *H nucleus (something like a neutron “halo”), while
in the case of >He - vice versa (a proton “halo”). This
results from the fact that the attraction of two nucleons
in the singlet state is essentially weaker as compared

ISSN 0503-1265. Yxp. Pi3. ocypn. 2002. T. 47, N 2



ADVANTAGES OF A REPRESENTATION

0,12

plr), fm®

?p(n), fm™;

0,04 H

0,02 +

0,00
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Fig. 1. Profiles of proton and neutron density distributions for
3H nucleus (for the AT-S3% interaction potential and point-like
nucleons). Curves (1), (2) depict p(r), while curves (3), (4) show
2

mp(r)

to the interaction in the triplet state. Among the
potentials used in this work, the best coincidence
with experimental data is attained with the AT-(S3)™"
potential with the only well-defined interaction in even
orbital states. We give also the results for another
version of the potential ATS3 (see [3]) in order to
compare our ultimate precise calculations with the best
ones available in the literature. Note that from the
physical point of view, the latter version of the potential
has no sense, because it supposes an unbelievable
attraction in the odd singlet state. In the case of
different masses of nucleons (see the rows M, # M,
in Tables I, IT), the obtained results slightly differ from
that with equal masses of nucleons (the upper Table
rows) and confirm the general rule: the binding energy
of ®H slightly increases, while that of *He decreases with
regard for the difference in masses. At the same time,
the r.m.s. radii practically do not change. The ultimate
complete calculation reveals the known discrepancy
between experimental and theoretical Coulomb energy
values. This means that it is necessary to take into
account the charge dependence of the nuclear interaction
potential. At last, we note that we have calculated the
single excited state in the spinless approximation for all
the potentials (see the part “spinless” in Tables I, II),
which exists at about 50 KeV below the two-particle
threshold obtained with the corresponding potential
averaged over spin.

Fig.1 depicts the proton p, (r) and the neutron p, (7)
density distributions in the case of 2H with the potential
AT-(S3)*. Here, both the neutron peripheral “halo”
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Fig. 2. Charge formfactors for 2H and 3He nuclei (for the AT-S3+
interaction potential and point-like nucleons)

-2

effect and essential increase of the proton density
distribution at the center of *H reveal themselves. We
have almost the same dependences in the case of He, but
with exchange of the proton and neutron indices, since
the main reason for the above dependences lies in the
difference of the nuclear potentials in triplet and singlet
states, while the role of the Coulomb interaction is not
essential. Fig.2 depicts the charge formfactors of the
nuclei °H and ®He for the same potential. Note that the
formfactor of *He decreases more rapidly, as compared
to that of H, already at small ¢> due to the larger proton
radius, and it changes the sign at less values of ¢* due
to the more important role of pair correlations between
the protons at the center of *He resulting in a specific
decrease of the proton density p, (r) at short distances
r in 3He.

3. To summarize, we clarify the main results. Using
the example of a three-nucleon system, we show the
complete physical and mathematical equivalence of both
the isospin formalism (with the total wave function
being antisymmetric in the space of spin, isospin, and
coordinate variables) and the proposed representation
without use of the notion of isospin (with the total
wave function being antisymmetric in identical nucleons
in the space of spin and coordinate variables). The
approach proposed for studying the few-nucleon systems
is much more simple and has essential advantages.
A detailed description of interaction potentials in all
the states is given with the three- and four-nucleon
equations using no isospin representation. Optimal
variational schemes are developed for studying the
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bound states of few-nucleon systems with high and
controlled accuracy.

Precise calculations are carried out for the bound
states of three-nucleon systems, and the results
surpassing the ones available in the literature in
accuracy are obtained for the bound state energy
and wave functions. An approximate rule of intervals
is found for the binding energies calculated in
different approximations, which gives a possibility to
have an efficient scheme of calculations using some
approximations. Note also that one can use a rather
accurate approximation of Eqs.(12) without regard for
the projection of the interaction onto odd and even
pair states (compare the results for the AT-(S3)*
and ATS3 versions of a potential). It is found that
the account of a difference in the nucleon masses
results in some increase of the binding energy of
3H (decrease for 3He), while r.m.s. radii are almost
unchangeable. The neutron density distribution in a 3H
nucleus is revealed to be of essentially greater radius
in comparison with the proton one (the neutron “halo”
effect), while we have the inverse effect in a 3He
nucleus (the proton “halo”). These nuclei have also the
charge density distributions distinctly different from the
mass density ones. The charge density distribution in
3H is very close to the neutron distribution in ®He,
and, vice versa, the neutrons in 3H are distributed
almost just as the protons in He due to the role of
nuclear forces, the Coulomb interaction being almost
negligible.

The representation without use of isospin enables us
to carry on the comparatively simple precise calculations
of four-nucleon bound states (the results obtained on
the basis of Egs.(14) will be published). The proposed
approach gives one a possibility to carry on a complete
study of the bound states of a five-particle system
(five equations for spatial components in the case of
S = 1/2) and, may be, of six-nucleon systems (also five
equations both for He and ®Li). But it should be noticed
that precise calculations without any simplifications for
more complicated nuclear systems still remain to be a
problem.

The advantages of the approach without use of
the isospin representation enable one to achieve a
superior accuracy in calculations of all the structure
characteristics of nuclei as compared to the results
available in the literature. The developed approach gives
a real possibility to construct new realistic variants of
NN-interaction potentials for a complete description of
all the low-energy parameters of few-nucleon systems.
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IIEPEBATU TIPEJICTABJIEHHA BE3 BUKOPUCTAHHA
®OPMAJIIBMY I30CIIIHY I IIPEITU3IINHI
JOCJITAKEHHA MAJIOHYKJIOHHUX

CHUCTEM

1.B.Cumenoe, I.C./loyenro, B.€.I'purior
Peszwome

3 MeTOI0 MPOBEJEHHS JOCIIIXKEHb BIACTUBOCTEH MAJIOHYKIOHHHUX
CHCTEM 3 BHCOKOIO i KOHTPOJILOBAHOIO TOYHICTIO MPOAHAJII30BAHO
JONiJbHICTh BUKOPUCTAHHSA (HOpMAJi3My i30CHiHYy A8 HYKJIOHIB.
Tloka3aHO, 1[0 BUKOPHWCTAHHS, 3a TPAAUI€0, ¢popmasizMy i30To-
MiYHOTO CIiHY TPU3BOJUTH J0 HEBHUIIPABJAHUX YCKJIAJIHEHD TOBHOL
xBUIBOBOI yHKnil i 36imbmenus KigbkocTi piBEsAHB Ajs 1T mpoc-
TOPOBUX KOMIOHEHT. Ha mpukiaji cucteMu TphOX HYKJIOHIB 3 II€H-
TpAaJTbHUMHU OOMIHHUMH MOTEHIiaIaMu B3A€MO/IIT B 3aTaJIbHOMY BH-
IJIsi/li BCTAHOBJIEHA TOBHA E€KBiBAJIEHTHICTH JBOX IiJAXOMAIB — Ipej-
CcTaBJIeHHS 6e3 BUKOPUCTAHHSA (HOpMaIi3My i30CHiHy i CTaHAAPTHO-
ro migxoay 3 BUKOpHUCTaHHSM (hopmadizmy izocruiny. Chopmysnno-
BaHi HOBI cuCTeMH PIBHSHD /Ui TPHOX HYKJIOHIB 3i cinom S = 1/2
Ta 90THPHOX HYKJOHIB 3i cmimom S = 0. Po3pobiaeni onrtmmasn-
Hi BapiamiifHi cxemMu 3 raycoigHuUMHU Oa3UCAMU I IPENu3idiHOTO
,E[OCJ'Ii,E[)KeHHﬂ OCHOBHUX XaPaKTEPUCTUK MAJIOHYKJOHHUX CHCTEM.
JIsisi TPHhOX HYKJIOHIB HA OCHOBI 3aIIPOIIOHOBAHOTO Hiaxoay i cop-
MYJIbOBAHUX PIiBHSIHDL OTPUMAHO 3 BECOKOIO 1 KOHTPOJIBLOBAHOKO TOU-
HicTIO enepril 3B’a3Ky, pajiycu, 3apsg0Bi PO3MOAiNIM TYyCTHHH Ta
dopm-dakTopu. BukoHaHO AKICHHN aHAII3 TOHKUX CTPYKTYPHHX
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ADVANTAGES OF A REPRESENTATION

0cO0IUBOCTEN MAJIOHYKJIOHHUX cucTeM. ITokazaHa mepeBara migxo-
y 6e3 BUKOPUCTAHHSI TPEJICTABJIEHHS 130CIiHYy: OTpUMaHi B AaHii
po6OTi pe3ysIbTaTH MAIOTh HAMKpAINY TOYHICTH B MOPiBHSAHHI 3 Bi-
JOMHMHU Pe3yJbTaTaMH, & TAKOX BiIKPUBAIOTH HOBI MOXJIUBOCTI
no0yZOBH PeasliCTHIHUX BAPIaHTIB sepHUX IOTEHNIAJIB AJIsS Of-
HOYACHOTO i TOBHOTO ONKCY OCHOBHUX HU3bKOEHEPIEeTUIHUX XAPAK-
TEPUCTUK MAJIOHYKJIOHHUX CHUCTEM.

IMPEUMYIIECTBA

NIPEJCTABJIEHUA BE3 NCIIOJIB3OBAHU A
DOOPMAJINBMA N30OCIINHA U ITPEITM3MNOHHBIE
NCCJIEJOBAHNSA MAJIOHYKJIOHHBIX CUCTEM

U.B.Cumenoz, U.C./JJouenxo, b.E.I'punror
Pe3smowme

Jl1g IpoBeeHus UCCIeTOBAHUYE CBOUCTB MAJIOHYKJIOHHBIX CHCTEM
C BBICOKOIT 1 KOHTPOJIMPYEMOH TOYHOCTHIO BBITIOTHEH aHAJIU3 UCIIO-
JIb30BaHUA hOpMaTH3Ma H30CHUHA AJid HyKJIoHOB. ITokazaHo, 9To
HCIIOJI30BaHUE, II0 TPAJUINN, (GOPMATH3Ma H30TOIMHIECKOTO CIH-
Ha IPUBOJUT K HEONPABJAHHBIM YCIOXKHEHUAM IIOJIHOHN BOJIHOBOI
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GYHKIUE B yBEJWYEHUIO KOJIWYECTBA YPABHEHHH J7d ee IIpOC-
TPAaHCTBEHHBIX KOMIIOHEHT. Ha upuMepe CUCTeMbl TPeX HYKJIOHOB
C IEeHTPAJIbHBIMIA OOMEHHBIMH HOTEHIWAJIAMH B3aUMOJEUCTBUA B
ofIeM BHE YCTAHOBJIEHA IOJIHAS SKBHBAJIEHTHOCTH ABYX IOZXO-
JI0B - IIpeCcTaByeHns 6€3 HCIONIb30BaHUs (DOPMATU3MA HIOCIUHA U
CTAHIAPTHOTO IOAXO/A C UCIIOIb30BaHUEM (POPMAIN3Ma H30CIHHA.
CcdopMyInpoBaHB! HOBBIE CHCTEMBI yPABHEHUH [JIsT TPEX HyKJIO-
HOB €O cnuHOM S = 1/2 m 4YeThIpex HYKJIOHOB €O cmuHOM S = 0.
Pazpaboranbl ONTUMAaJIbHBIE BAPUAIMOHHBIE CXEMBI C TQyCCOU 1A b-
HBIMH 6a3WMCaMu [J TPENU3UOHHOIO UCCJIeJOBAHNAA OCHOBHBIX Xa-
PaKTEPUCTUK MAJIOHYKJIOHHBIX cHCTeM. Jlyisi Tpex HYKJIOHOB Ha
OCHOBE IIPEJIOXKEHHOTO IIOAXO0Aa U CPOPMYIUPOBAHHBIX ypaBHe-
HUH IIOJTyYIeHBl C BBICOKONH U KOHTPOJHPYEMOH TOYHOCTHIO SHEPTHHU
CBsI3M, PaNyChl, 3aPsiOBblE PACIPEIEJIEHNsT IJIOTHOCTA U (HPOPM-
daKTOpHl. BEINOTHEH KaeCTBeHHBIN aHATH3 TOHKHAX CTPYKTYPHBIX
0COOEHHOCTEH MAJIOHYKJIOHHBIX cuCTeM. [I0Ka3aHbl TpenMyIecTsa
noaxona 6e3 UCIOTb30BAHUSA IIPEACTABICHUS M30CIUHA: IOTydeH-
HblE€ B JAHHOI paboTe pe3yjbTaTbl MMEIOT HAMJIYUIIYI0 TOYHOCTH
[0 CPABHEHUIO C U3BECTHLIMH pe3yJbTaTaMHU, & TaK»Ke OTKPBLIBa-
IOT HOBBI€ BO3MOXKXHOCTH IIOCTPOCHUA PEAJIUCTUICCKUX BAPUAHTOB
ANEPHBIX IMOTEHINAJIOB [IJId OJHOBPEMEHHOI'O M IIOJTHOT'O ONMUCAHUA
OCHOBHBIX HU3KOHEPIeTHIECKUX XaPAKTE€PUCTHK MAJIOHYKJIOHHBIX
CHCTEM.
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