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Nucleon structure functions in the resonance region are
investigated. Expressions for resonance production formfactors
dependent on photon virtuality @2, which have correct threshold
behavior and take into account the available data on resonance
decays, are obtained. The resonance part of nucleon structure
functions is calculated. The manifestation of the quark-hadron
duality in the behavior of the structure function F»> is studied
using the obtained expressions. The relation between the structure
functions F7 and F3 in the resonance region is derived.

Introduction

Many years ago the duality of resonances at low energies
and Regge poles at high energies was found. The term
“duality” means here that an amplitude can be described
either by resonances or by reggeons.

The Veneziano amplitude was the first example
of successful implementation of the hadron-reggeon
duality. Another example is a Dual Amplitude with
Mandelstam Analyticity (DAMA) [1, 2], in which
complex non-linear Regge trajectories with correct
thresholds can be introduced.

A little bit later the quark-hadron duality was
discovered by Bloom and Gilman [3]. They analyzed
the nucleon structure function W5 and found that the
structure function in the nucleon resonance excitation
region, averaged over resonances, with good accuracy
coincides with the structure function in the deep inelastic
region.

The exact mathematical formulation of the duality
(both resonance-reggeon and quark-hadron ones) was
given on the basis of the finite-energy sum rules
formulated independently in [4—6].

The investigation of the quark-hadron duality
can improve our understanding of the structure and
interaction of hadrons in terms of the quark and gluon
degrees of freedom.

The quark and gluon degrees of freedom are a
convenient basis for the gauge invariant theory of strong
interaction — quantum chromodynamics (QCD). The
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hadronic degrees of freedom form other basis. Since all
physical quantities must not depend on the choice of
a basis, the descriptions of processes in terms of the
quark-gluon and hadronic degrees of freedom must be
equivalent.

The choice of degrees of freedom for the description
of hadron processes depends on specific kinematic
conditions. For instance, in lepton-nucleon scattering,
the resonance production region is usually described
using the hadronic degrees of freedom, whereas the deep
inelastic region is naturally described in terms of the
quark-gluon degrees of freedom.

Formally, the quark-hadron duality is exact, but
practically the necessity to cut the expansion of any
Fock state leads to different manifestations of the duality
under various kinematic conditions and in various
reactions.

The duality offers additional possibilities for the
investigation of nucleon structure using the data on
the properties of nucleon resonances. For example, the
corrections to scaling behavior of the structure function
F3, calculated in QCD and measured during the last
decade, can be extracted from the resonance data [7].

For theoretical description of the duality, it’s
necessary to construct structure functions in the
resonance region (threshold energies and small photon
virtualities). For this purpose, the dependence of the
resonance production formfactors v*N — R on photon
virtuality Q> must be known. In this article, we
construct the formfactors and study the quark-hadron
duality.

The experimental data, obtained in the Jefferson

LAB [8, 9], were a good incentive for this
work.
Formfactors

Lepton-hadron scattering in the lowest order on the
electromagnetic coupling constant is described as an
exchange of a virtual photon with virtuality Q% = —¢>
(¢ is the four-dimensional momentum of a photon) and

1123



V.V. DAVIDOVSKY, B.V. STRUMINSKY

energy (in the nucleon rest frame) v = (pg)/m (p is
the four-dimensional momentum of nucleon, m is the
nucleon mass). In this case, ¢? serves the role of squared
momentum transferred from a lepton to a nucleon.

The mechanism of the virtual photon and nucleon
interaction depends on the quantity of transferred
momentum @2 and photon energy. At high Q% and v,
noncoherent scattering of a virtual photon on nucleon
quarks takes place, and a huge amount of hadrons is
produced.

_(M2+m2+Q2.00 VMZ = m? = Q%)% + 4M2Q?
p_ 2M b ) b 2M
—(MQ_m2_Q2-00 VOMZE = m2 = Q%)% + 4AM2Q?
q_ 2M I b ) 2M

P =(M;0,0,0), (3)

where p? = m?, P2 = M?, and M is the mass of a
resonance.

The vertex of virtual photon absorption by a nucleon
v*N — R is described by three independent formfactors
G+ 0(Q?) (or by two, when the spin of a resonance equals
to 1/2, and G_(Q?) = 0), which are (in the resonance
rest frame) helicity amplitudes of the transition v* N —
R:

G, :ﬁ<R,/\R:/\N—/\7|J(0)|N,)\N>, (4)
where Ag, Ay and A, are the helicities of resonance,
nucleon, and photon, respectively; J(0) is the current
operator; A, takes the values of —1, 0, +1.

Nucleon structure functions can be expressed in
terms of formfactors (4) as follows [10]:

M?) [IGH(QMF +1G-(Q)] ,
(5)

Fi(z,Q%) =m?s(W? —

<1 + 5_22> Fy(2,Q%) = mvs(W? — M?)x

x [|G+(Q)F +21Go (@) +1G-(Q))] , (6)

@+%)m@@%=m%mﬂ—MNW4¢W—
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At moderate Q? (~ 1 GeV?) and v, internal nucleon
spin states are excited, which leads to the resonance
production (Fig. 1).

Below we introduce main notations and define

necessary quantities.

The four-dimensional momenta of the nucleon,
photon, and resonance are denoted as p, g, and P,
respectively. In the resonance rest frame, components
of these vectors read:

), (1)

@ + -0 D2 G ca@ )

Q+%>mm@%=ﬂﬁmW—M%WM¢W—

—G (@) = (1) %/i Go(Q) G (@), (8)

where J, 1 are the spin and parity of a resonance,
respectively; W2 = (p + ¢)? is the square of the total
energy of a photon and a nucleon in the c.m. frame;
z is the Bjorken variable. Just to recall, the structure
functions F; and F5 are related to Wi and W, by
the relations Fy(z, Q%) = mW;(v,Q?) and Fy(z,Q?) =
vWa (v, Q?).

Now, it’s easy to derive the relation between the
structure functions Fy and F» from (5) and (6):

4m?2a?

A+ =m) o = 22F1 (1+ R(@Y), 9)
where the ratio of longitudinal and transverse cross
sections of virtual photon absorption R(Q?) =
= 01(Q%)/or(Q?) is expressed in terms of formfactors
as follows:

2
2 %: |G0 (Q2)|

R(Q?*) = )
(@) > 1G @ + 16 (@7

(10)
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This relation in the scaling limit Q2 — oo under
assumption R(Q?> — oc) — 0 transforms to the well-
known Callan-Gross relation valid in the parton model
for quarks with spin 1/2.

Formulas (5)—(8) determine a contribution of
one infinitely narrow resonance to nucleon structure
functions. For a resonance with width I' in (5)-(8), we
change the delta-function §(W?2 — M?) to
1 MT

— . 11
7 (W2 — M2)? + M2T? (11)

In principle, this expression is not a unique
approximation of the resonance shape. But now the
particular choice of the resonance contribution is
not very significant. It’s worth mentioning here that
expression (11) originates from the propagator of a
resonance.

The basic idea of this paper is to take contributions of
all resonances, whose data are published in the literature
[11], into account. If we let Fy, and gf%) to denote the
contribution of a resonance R to spin-independent and
spin-dependent structure functions, respectively, then
the contribution of only resonances to the structure
functions can be written as a sum:

Fip = ZF&; g2 = 2952-
R R

To calculate the resonance contribution to the
structure function, one must construct the formfactors
of resonance production as the functions of photon
virtuality Q2. Note that the dependence of formfactors
of the known resonances [11] on @Q? practically is not
studied experimentally. In tables in [11], only their
values at Q? = 0 are listed.

The transitions v*N — R may be of two types by
parity: normal, i.e.

(12)

1/2+ — 3/2_,5/2+,7/2_,... (13)
and abnormal:
1/2+ — 1/2_,3/2+,5/2_,... (14)

About the corresponding formfactors G4 o(Q?), it’s
known the following: a) formfactor threshold behavior at
|g] — 0 [12], b) formfactor asymptotic behavior at high
Q?, ¢) formfactor value at Q% = 0 [11].

So, as was shown in [12], the formfactors of
production of a resonance with spin J in case of the
normal parity transition v*N — R (13) have the
following threshold behavior:

G+(Q%) ~ |37 *2, (15)
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Fig.1. Nucleon resonance production in the lowest order on
electromagnetic coupling constant

Go(Q®) ~ 1 la’ .

1 (16)

In case of abnormal parity transitions (14), we have:

GL(Q%) ~ |g"'/2, (17)

Go(Q?) ~ % |17+,

(18)

A special case is presented by the transitions 1/2% —
1/2%, which are determined by only two formfactors
G4 and Gy (G_ corresponds to resonance helicity 3/2
and, thus, is absent for resonances with spin 1/2). Their
threshold behavior for the transition 1/2% — 1/27 is as
follows:

G (Q*) ~ 4, (19)

Go(Q%) ~ 2072,

[

The formfactors of the transition 1/2% — 1/27 are
determined by (17) at J =1/2, i.e.

(20)

G, (Q?) ~ const, (21)
Go(Q?) ~ % - (22)
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The behavior of formfactors at high Q2 is determined
by quark counting rules [13, 14], according to which

Gi(@Q)~Q7% Go(@)~Q", G(Q)~Q"
(23)

So, we suggest the expressions for formfactors,
possessing all the above-mentioned properties, as

1GL(Q%)] = |G<(0)* x
i ap ( @ )mi
@0 Q7 + Q7 +qQ)

s 2 e Q2 >2aﬁ
[Go(@)]" =© <Q2+Q32 Tk

(24)

a e ( % )"
Tla=0 @+ Q¢ @

for normal parity transitions and

a e\
flao @+ Qg

1GL(Q%)]" =1G=(0) (

2™
x<Q2+Q%> ’

2\12 _ 2 Q° >2aﬁ
6@l =" (Griam) T

@ Q2 U @ ™
>< 7, P
|7lg=0 Q%+ Q¢ <Q2 +Q‘a’>

for abnormal parity transitions, where

(26)

(27)

\/(MQ —m2 = Q2)2 + 4M2Q2

7= oM ;

M? —m?

|q—1Q:0 = 2M

and my =3, m_ =5, mg =4.
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Formfactors of the transition 1/2T — 1/2% are
written as:

@ @\
|7lo=0 Q2+ Q¢

G4 (Q%)]" = G+(0)) (

2 \™
(va) )
2V12 _ 2 Q* >2aﬁ
G =" (iam) i
4
@ @ ()"
X<|q‘1Q:o Q2+Q'02> T+@) (30

In expressions (24)—(26), the quantities Q2, Q2,
Q;]I?, and a are free parameters, which could be
determined by fitting experimental data. The coefficient
C could be determined when the experimental data on
the ratio of longitudinal and transverse cross sections of
virtual photon absorption R(Q?) will become available,
because of relation (10).

By the way, expression (10) together with (24)—(26)
allow one to determine the behavior of R, which may be
used for the experimental data analysis.

The values of formfactors at (2 = 0 are related to the
helicity amplitudes of photoproduction A;,, and As,,
listed in [11], as follows [10]:

_ M2 —m?
Gy (0)=e! Vo |A1/2,3/2]

(31)

where e = /4w/137 is electron charge. Note, that
the longitudinal formfactor at @2 = 0 turns to zero:
Go(0) = 0.

Substituting expressions (5)—(8) written for each
particular resonance, taking into account parity of
the transition, and using the proper expressions for
formfactors, to (12), we get the structure functions in
the resonance region:

Fl(maQQ) =

_Zm_2 MT y
T 2T (m?+ Q2 (1/z — 1) — MP)? + MPT?

a Q2 \
X<|ﬂQoQ2+Q’£> §
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2 Q% " 2 Q% "
Jeor(Fg) oo (@a) |
(32)
2m? 1
@) =3 ey 7
MT
X7+ Q2(1/z — 1) — M) + M2

i e \" . (@8 \™
XKMQO Q2+Q’02> ('G*(O)' <Q2+Q%> !

2 m_ 2 2a
+G-OF <QQ%Q%> >+202 <Q2Q ) .
ca (i Qg ( 0 )’”] (33)
“17? \1fla=0 @°+ Q7 @+Q) 1

1 m?2

2
= _— — X
) ER: 1+4m222/Q? =

o MT
(m2+Q*1/z—-1) —

MQ)Q + M?2T2 X

g1 Qo

19 Q(Q) m+_
(e e¥a) (o0r(a%)

eor( i) )
(et

2\/_mx
Q* +Qp?

HP ¢ JRCRCE

|QO| |q] Qo
“la \Idlo—o Q7+ Q7

(no+ny)/2
) »

Q2 (mo+my)/2
<Q2 + Q2> ]
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(34)

m2

1
2y — _ -
92(2,Q%) = ZR 1+4m2z2/Q? = %

o MT
(m? +Q*(1/z —1) -

M2)2 + M?2T2 X

[

: \ @ \™
XKszo @2+@3> ('G“O)' (&ra) -

i qyJ—1/2 Q
(~1)? nﬁmx0<

Q2
Q>+ Qy?

)G|G+<o>|><

ol [ dl Q0
i \dle=o @+ Q7

y ( Q% >(m0+m+)/2
Q* +Qf ’

where ny = 2J — 3, ng = 2J — 1 for normal parity
transitions and ny = 2J — 1, ng = 2J + 1 for
abnormal parity transitions, and the sum is over the
resonances. We take into account the contributions of

(no+n4)/2
) 3

(35)

the following resonances: N (1440), N(1520), N(1535),
N(1650), N(1675), N(1680), N(1700), N(1710),
N(1720), N(1990), A(1232), A(1550), A(1600),
A(1620), A(1700), A(1900), A(1905), A(1910),
A(1920), A(1930), A(1950).

The above expressions determine the resonance
contribution into nucleon structure functions. It’s
obvious that the production of resonances in electron-
nucleon scattering is not the only process contributing
to structure functions. The production of mesons and
other hadrons forms a non-resonant background, which
also must be taken into account.
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----Q=02GeV’
------ Q’=0.45 GeV’
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Fig.2. Resonance contribution to the structure function Fa(¢,Q2)

in resonance region

The non-resonant
parameterized [9] as:

background  could  be

Q? 11—z

nr 2\ __ 2
F2 (:E:Q )_ Amn2c 1+ 4%2;2 (1+R('T1Q ))X
al 2 n—1/2
X Y Cn(Q%) [W = Win] : (36)
n=1

where N = 3, C, are fitting coefficients, Wiy, is the
threshold energy.

Duality

So finally we obtained the nucleon structure functions in
the resonance region that are dependent on the Bjorken
variable and photon virtuality.

Let’s consider, following [3], how the expressions for
structure functions (32)—(35), which contain resonance
terms and have the strong dependence on @Q? (because
of formfactors), change over in the limit of high Q2 to
scaling expressions, which weakly depend on Q2.

We change over to the variable ' = Q2/(Q* + W?2),
which is related to the Bjorken one z as follows:

' xQz

Let’s consider the case of infinitely narrow
resonances, i.e. I' = 0. In this case, a structure function
will be nonzero only at those values of z’, at which
W2 = M? ie. o' = Q%/(M? + @?). One may easily
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see that the resonance shifts to the region z' = 1 as Q?
increases. As experimental data indicate, the resonance
follows the scaling curve. The form of this curve can
be evidently derived from the expressions for structure
functions in the resonance region by the substitution
Q*=M?*z'/(1—2").

In the case of resonances with finite width, the
equality W2 = M? is approximate, which leads to
corrections to scaling behavior, which are proportional
to I'/M.

In this paper, we restrict the consideration to the
structure function F5. It’s worth mentioning that the
structure function ¢; is sensitive, unlike F5, to the
longitudinal formfactor and relative values of G and
G_, because they are included in (35) as a difference.

In (33), we change over to the variable 2’ and get at
high Q*:

o2 2N T /1 g\ T
R = T [|G+<o>|2 () (55) +
. ) Qg m_ 1—.’El m_
He-op () (LE) +

2\ ™Mo 1\ ™o
+2C° <%> <1 x,w ) ]
It follows from (38) that the structure function Fy(z') ~
~(1—=2")"+ as 2z’ — 1.

In the resonance region, the Nachtmann variable
& = 2z/(1 + /1+4m?22/Q?) is often used (variable
r = Q?/2mv is not convenient for the analysis of
structure functions in the resonance region, because all
resonances are densely situated in the region z ~ 1).
From the inequality 0 < < 1, it’s easy to derive that
0<¢<Q/m(\/1+Q%/4m? — Q/2m).

The dependence of the resonance part of the
structure function F3 on the Nahtmann variable ¢ at
various values of ? is shown on Fig. 2. Specific values
of (o, Q;], and Qg used to plot Fig. 2, are not significant
at this point. The solid line corresponds to the fit to the
deep inelastic data for F5(¢) [8].

One can see that A(1232)-isobar gives the largest
contribution to the structure function. The non-resonant
background in this region appears to be relatively
small, unlike the regions corresponding to more massive
resonances. One can also see that the A(1232) peak
exactly follows the scaling curve as Q? changes, which
is a manifestation of the duality.

(38)
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For the comparison with experimental data,
the parametrization of the non-resonant background
contribution must be carried out. However, now this
problem has no unique solution.

Taking the non-resonant background into account
must lead to a rise of the structure function in the region
of higher resonances where it follows the scaling curve
(in varying *) in a broad region of £.

Conclusion

The equality, discovered by Bloom and Gilman, of
the nucleon structure function F5, averaged over a big
enough domain of the scaling variable, in the resonance
region and the deep inelastic region confirmed the
existence of quark-hadron duality, i.e. the possibility of
the description of processes using the language of either
only hadronic or quark degrees of freedom.

Practically it means that the investigation of nucleon
resonances, for instance in terms of formfactors, offers
additional information on nucleon properties in the deep
inelastic region.

Expressions for the formfactors of nucleon resonance
production, obtained in this work taking into account
the correct threshold behavior and experimental data
on resonance decays, may serve as starting ones for the
investigation of nucleon properties in the language of
hadronic degrees of freedom.

The obtained expressions for structure functions
allow one to show qualitatively the manifestation of the
duality with the structure function F, as an example.

In future, we plan to investigate the structure
function g1, which gets an essential contribution from
the longitudinal formfactor. A numerical verification of
our model is also interesting and will be carried out as
new experimental data become available.

The authors thank Laszlo Jenkovszky for helpful
discussions.
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ITIOBEJITHKA ®OPM-®AKTOPIB HYKJIOHHUX
PE3BOHAHCIB I KBAPK-AJJPOHHA AVYAJILHICTD

B.B. Jlasudoscvruti, b.B. Cmpymincorud
Peszwome

JocnigkeHo cTpykTypHi DyHKIIT HYKJIOHA B pe30HAHCHI#N 06s1acTi.
Ognep:kano 3asexkHi Big Bipryansrocti doroma Q2 Bupasm muas
dhopM-paKTOpiB HAPOMKEHHSI PE30HAHCIB, SIKi MAOTh IPABUJIb-
Hy NOPOrOBY MHOBEJIHKY i BPAxXOBYIOTH HASBHI €KCIEPHMEHTAJIb-
Hi gaHi 3 po3naaiB pe3oHaHCiB. OOYHUCIEHO PE30HAHCHI YACTUHU
CTPYKTYpHEX QYHKIi# HykjgoHA. BukopucToByooun ogep:kaHi BH-
pa3u, JOCTiI2KeHO TPOSAB KBAPK-aJPOHHOI TYAJBHOCTI y HOBEIIHII
crpykrypuol dyuknil Fy. Buseneno cnisBignomenns, sike 3B’s13ye
CcTPYKTYpHI dyHKnil Fy i F» B pe3oHaHCHIi# ob6nacTi.

ITIOBEJIEHUE ®OPM-®AKTOPOB HYKJIOHHBIX
PE3OHAHCOB I KBAPK-AJJPOHHA{ IYAJIBHOCTD

B.B. Jlasudosckuii, b.B. Cmpymuncrud
Peszwome

Uccnegyrorcsa crpykTypHBIe DYHKINA HYKJIOHA B PE30HAHCHOH 00-
nactu. Tlomydens 3aBuCAIEE OT BUPTYAIbHOCTH dhoTOHA Q2 BBI-
pakenust st GOpPM-(DAKTOPOB POXKIEHUSI PE3OHAHCOB, KOTODBIE
UMEIOT NIPaBUJIbHOE IIOPOTOBOE TOBEACHUE U YINUTHIBAIOT UMEIOIIN-
eCsl HKCIIEPUMEHTAJIbHBIE JAHHBIE 0 PACIAJgaM DPE30HAHCOB. Bbi-
GHCIEHBl PE30HAHCHBIE YACTH CTPYKTYPHBIX (DYyHKIUH HYyKJIOHA.
Vcnonb3ysi mONydYeHHBbIE BBIPAYKEHHUs, UCCIEIOBAHO MPOSIBJICHUE
KBAapK-3JPOHHOH JyaJIbHOCTH B IOBEJEHUHU CTPYKTYPHOH PyHKI[HN
F5. BeIBeleHO COOTHOIIIEHHE, CBA3BIBAIOIIEE CTPYKTYPHBIE DYHK-
unu F} u Fo B pe3oHaHCHON obJsiacTw.
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