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The energies of electron resonance quasistationary states in opened
two-barrier spherical nanoheterostructures are obtained within the
effective mass approximation using the S -matrix theory. Numerical
calculations are performed for the HgS/CdS/HgS/CdS/HgS
nanosystem. The S -matrix poles in the complex plane of energy are
studied. The quasistationary state energies and electron lifetimes in

these states are obtained as functions of nanosystem geometric sizes.
It is shown that the electron lifetime in an excited quasistationary
state quasiperiodically depends on the sizes of nanoheterosystem
wells.

Introduction

During the last few years, a new branch of solid state
physics ¯ arrays of quantum dots ¯ has got a great
interest of scientists. Quantum dots (QD) are the
unique objects combining the properties of bulk
semiconductors and single atoms. The temperature
stability of quasiparticles spectra in QD makes possible
the essential improvement of modern devices: radiation
detectors, light diodes, lasers, solar batteries, etc. [1
¯ 4]. The unique characteristics of QD give
opportunity to fabricate electron devices which have
a wide perspective in the development of semiconductor
technique.

Recently, the spherical complicated
nanoheterosystems [3 ¯ 4] have been created by using
modern technologies. The electron, hole, and exciton
spectra and their interaction between each other and
with phonons were studied in [5 ¯ 7] for such
nanosystems. Multishell spherical nanosystems have
more complicated quasiparticles spectra than single
QD. That is why their experimental utilization receives
a new impetus, while the theoretical investigation and
analysis of physical properties become more
complicated.

So-called opened QDs [8, 9] (began to be studied
not long ago) have the basically new peculiarities. In
such systems, quasiparticles being in quasistationary
states can tunnel through the potential barrier
penetrating into the external medium which is the
potential well for them. In quasistationaty resonance
states, they have a finite lifetime depending both on
the physical and geometric parameters of a
nanosystem. In [9], it was shown that one can see
in the radiation spectra of opened spherical

nanosystems only those resonance quasistationary
states, the lifetime of the radiation transition between
which is much smaller than the electron or hole lifetime
in these states. Thus, it is possible to guide the
quasiparticle spectra in opened nanoheterosystems.

In this paper, we investigate the electron spectrum
and lifetimes in resonance quasistationary states of an
opened spherical two-barrier nanoheterosystem
(HgS/CdS/HgS/CdS/HgS).

1. Electron Hamiltonian and Wave Functions in Opened
Spherical Two-barrier Nanoheterostructure

The complicated spherical nanoheterosystem (Fig. 1)
consisting of two HgS shells which are the potential
wells 0, 2, two CdS shells creating the potential barriers
1, 3, and the external medium HgS 4 is under study.

In a spherical coordinate system with the beginning
at the center of the heterostructure, an electron has
the effective mass m  (r) and potential energy U (r)
which are the functions of the distance from the center
because they have different values in different media:

m  (r) =  




m 0,    r < r0,   r1 < r < r2,   r > r3,
m 1,   r0 ≤  r ≤  r1,   r2 ≤  r ≤  r3,

U (r) =  




0,   r < r0,   r1 < r < r2,   r > r3,
Ue,   r0 ≤  r ≤  r1,   r2 ≤  r ≤  r3. (1)

Due to the effective mass dependence on r, the
Schrodinger equation has the form [10]





−  
h− 2

2
 ∇→ 

1
m  (r)  ∇→ +  U (r→  )




 Ψ (r) =  E  Ψ (r). (2)

Considering the spherical symmetry, its solution is
written as

Ψ (r→  ) =  R l (r) Y lm  (θ,  ϕ),    l =  0,  1,  2, ...

m  =  0,   ±  1,   ±  2, ..., (3)
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where R l (r) is radial wave function:

R l(r) =  











R  l
(0) (r),

R  l
(i) (r),

R  l
(4) (r),

    

0 ≤  r < r0,

ri− 1 ≤  r < ri,

r3 ≤  r < ∞ .

    (i =  1,  2,  3) (4)

Inserting (3) in (2), we obtain the system of typical
equations

1

r 2
 

d
dr

 


r 2 
dR  l

(i)

dr




 +  


K  i
2 −  

l (l +  1)
r 2





 R  l
(i) (r) =  0,

(i =  1,  ` ,  4), (5)

where

K  i
2 =  

2m i

h− 2
 (E  −  Ui) =  





k 2,
−  χ 2,

    
i =  0,  2,  4,
i =  1,  3.

(6)

Their solutions are the linear combinations of Hankel
functions of different arguments

R  l
(0) (r) =  k A l

(0) [ h l
−  (k r ) +  h l

+  (k r )] ,

R  l
(i) (r) =  K i A l

(i) [ h l
−  (K i r) −  S  l

(i) h l
+  (K i r)] ,

(i =  1, ...,  3),

R  l
(4) (r) =  k Al [ h l

−  (k r ) −  S l (k) h l
+  (k r)] . (7)

The coefficient Al =  1/ √2π  is fixed by the normalizing
condition for the radial wave function [10]:

∫  
0

∞
R  lk

∗  (r) R lk′ (r) r 2 dr =  δ (k −  k′  ). (8)

The other unknown coefficients A l
(i)

,  S  l
(i)

 and
scattering matrix S l are defined by the fitting
conditions for the wave functions and their derivatives
as 

R  l
(i) (K i ri) =  R  l

i+ 1 (K i+ 1 ri),

 1
m i

 
dR  l

(i) (r)
dr



 r= ri

 =  
1

m i+ 1
 
 dR  l

(i+ 1) (r)
dr



 r= ri

(i =  0,  1, ...,  4). (9)

The system of equations (9) gives an exact analytic
solution for the S -matrix. In the case of spherically
symmetric states (l =  0) which would be analysed
further, S0 =  S  has the form

S  (k) =  e− 2ikr3  {e2χ(r2− r3 ) [ m 1 (− 1 −  ikr3) +

+  m 0 (1 +  χr3)] + [ m 1 (1 +  ikr3) +  m 0 (− 1 +  χr3)]  ξ3}/

/ {e2χ(r2  −  r3 ) [ m 1 (− 1 +  ikr3) +  m 0 (1 +  χ r3)]  +

+  [ m 1 (1 −  ikr3) +  m 0 (− 1 +  χr3)]  ξ3 }. (10)

where

ξ3 =  {− m 0 +  m 1 −  χm 0 r2 −  ikm 1 r2 +

Fig. 1. Geometric scheme (a) and electron potential energy scheme (b)
for the spherical nanosystem
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+  e 2i k(r1− r2 ) [ m 1 (− 1−  ikr2) +  m 0 (1 +  χ r2)]  ξ2}/

/ {− m 0 +  m 1 +  χm 0 r2 −  ikm 1 r2 −  e2ik(r1− r2 ) ×

×  [ m 1 (1 +  ikr2) +  m 0 (− 1 +  χ r2)]  ξ2 }, (11)

ξ2 =  {m 0 −  m 1 +  χm 0 r1 +  ikm 1 r1 +

+  e 2χ(− r0+ r1 ) [ m 1 (1−  ikr1) +  m 0 (− 1 +  χ r1)]  ξ1 }/

/ {m 0 −  m 1 +  χm 0 r1 −  ikm 1 r1 +  e2χ(− r0+ r1 ) ×

×  [ m 1 (1 +  ikr1) +  m 0 (− 1 +  χ r1)]  ξ1 }, (12)

ξ1 =  
m 0 −  m 1 +  χm 0 r0 +  m 1 k ctg (kr0) r0

m 0 −  m 1 −  χm 0 r0 +  m 1 k ctg (kr0) r0
. (13)

The properties of S l at l ≠  0 are the same as for
l =  0. Therefore, we shall study the electron spectrum
only in spherically symmetric states.

2. Properties of S-matrix. Electron Spectrum 
in Resonance States

The S -matrix obtained in Section 1 has the properties
well known from the scattering theory [11]. In the
complex plane of quasimomentum, one has
k =  k1 +  i k2. In the real axis k1, | S  (k) |  ≡  1, and the
S -matrix poles in the imaginary plane k2 define the
stationary states of the system. So-called
quasistationary states (which live during a certain time
τ) of a quasiparticle in the potential field U (r)
correspond to the every pole of S  (K) in the lower
semiplane (k =  k1 −  i k2).

Due to the fact that the potentials of both wells in
the spherical nanosystem HgS/CdS/HgS/CdS/HgS
under research are equal to the potential of the external
medium, there cannot be any stationary states in it.
There are only resonance quasistationary states where
the electron is located for a long time in the internal
part of the system. Fig. 2 shows the real (Re S ) and
imaginary (Im S ) parts of the S -matrix as functions
of complex energy. Here, one can also see the location
of the S -matrix pole corresponding to the lowest
resonance quasistationary state. The calculations were
performed for the system with material parameters:

m 0 =  0.036 m e, m 1 =  0.2 m e, aHgS =  5.851 A° ,

aHgS =  5.818 A° , Ue =  1.35 eV and shell sizes:
n0 =  15, ∆1 =  5,   ∆2 =  15,  ∆3 =  5 (∆ i =  n i −  n i− 1) (in
units of lattice constant).

It is clear from Fig. 2 that the S -matrix as a function
of the complex variable E

~
 has the following charac-

teristic behaviour: almost everywhere in the complex

energy plane (E  =  E1 +  i E2), its real and imaginary
parts are smooth functions. Only in the vicinity of a
pole, both have the second-order discontinuity at the
point (En0,  −  i Γn0/ 2) of the complex energy plane.

Numerical results for the S- matrix and location of
its pole in the complex energy plane make it possible
to investigate the electron resonance quasistationary
states energies E  and lifetimes τ dependences on
geometric sizes of the nanosystem.

Fig. 3 shows the electron resonance energies En0
and lifetimes τn0 in spherically symmetric
quasistationary states of the opened two-barrier
nanoheterostructure HgS/CdS/HgS/CdS/HgS as
functions of core radius r0 at fixed sizes of the system
shells. One can see from the figure  that these de-
pendences are nonmonotonous. The reason is obvious
because if the heights of both internal potential barriers

Fig. 2. Dependences of the real and imagionary parts of the scattering
matrix S  on E

~
 and location of the pole in the complex plane for state

| 100〉  at n0  =  15, ∆1  =  5, ∆2  =  15, ∆3  =  5 in units of lattice constant
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would be infinite, the electron states would be
stationary and the spectrum  at l =  0 would be located
in the region of energies reflected in Fig. 3 by respective
grey bands. Herein, it is clear that electron levels
| n  00〉2 located in the second well (medium 2) must
not be changed when n0 (the number of monoshells
in well 0) is varied because a change in the internal
well size brings to a change in the external well
curvature and does not influence its width. Thus, the
energy levels must be located on the boundaries of
horizontal grey bands. If an electron would be located
in the internal well (zeroth medium), then its energy
levels must be shifted into region of lower energies
confined by the decreasing bands when the well size
increases. Since, an electron in the spherical
nanosystem with two isolated infinite potential
quantum wells in spherically symmetric states would
be characterized by the spectrum with two crossed
groups of energy levels at the fixed thickness of the
second well (∆2) and variable size  of the  first well
(n0).

The real nanosystem HgS/CdS/HgS/CdS/HgS
contains potential barriers of finite height, which
means that the electron moves in the field of finite
potential in the space between the wells. Herein, the
presence of the second barrier (∆3) brings to the fact
that the states are now resonant and quasistationary
because the quasiparticle can perform an infinite
movement; the presence of the first barrier causes the
effect of repulsing levels since the symmetry of both
groups of states (due to both wells) is the same.

It  is  obvious  that  the resonance energy levels
borned  by  the  quantum  well  0 (see Fig. 1)  are
shifted to the bottom when its sizes increase, and the
levels borned  by  the  quantum  well  2  almost  do
not depend on n0. Such behaviour of quantum system
energy levels causes the existence of the regions of
repulsing levels and characteristic cascade dependence
of the level on n0. Herein, the regions, where Eno

are close to the horisontal, belong to the states where
the electron is located generally, in the potential well
2, and those where En0 are decreasing belong to the

Fig. 3. Dependences of electron resonance energies En0  and lifetimes
τn0  on n0  at ∆1  =  5, ∆2  =  15, ∆3  =  5

Fig. 4. Dependences of electron resonance energies En0  and lifetimes
τn0  on ∆2  at n0  =  15, ∆1  =  5, ∆3  =  5
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states where the electron is located generally, in core
0.

Now it is easy to understand the dependence of
electron lifetime in quasistationary states τn0 (r0) (Fig.
3,b). It is clear from the Fig. 3,a that, in the region
n0 ≤  18, the lowest resonance level belongs to a
quasistationary state where the electron is located in
the quantum well 2, from which its easy to tunnel
through the last potential barrier 3 into the external
medium; consequently, the electron lifetime in this
state is small (Fig. 3,b).

The other situation is in the region n0 > 18 where
the core sizes are such that the electron with the
smallest energy is generally located in the quantum
well 0 from which it is harder to penetrate (through
the two barriers) into the external medium; since, the
lifetime in this state increases. A monotonous and rapid
increase in the lifetime τ10 in the region n0 > 18 is
also caused by the smaller magnitude of the energy
level; thus, the height of the potential barrier, through
which the electron has to tunnel into the external
medium, becomes higher.

The dependence τ20 (n0) has the other character
than τ10. From Fig. 3,b, one can see that the τ20 curve
has one maximum in the vicinity n0 ≈  13. Analysing
E20 as a function of n0, it becomes clear that, at small
n0 magnitudes, the electron is generally located in the
second well 2, where its lifetime is small. When n0
increases, the energy decays, corresponding to the
electron moving into the first well, from which it is
harder to penetrate into the external medium; thus,
its lifetime in this state becomes bigger reaching the
maximum at n0 ≈  13. A further increase in n0 makes
the resonance energy closer to the lowest electron level
in the second well. Thus, it again moves into the second

well 2, from which it is easier to tunnel into the external
medium, and the lifetime in this state becomes smaller.

Analysing E30 by analogy, it is clear that τ30 as a
function of n0 must have two maxima that is seen in
Fig. 3,b.

The general conclusion is the following. The electron
lifetimes in resonance states corresponding to the
regions of decreasing energies are big and are small
in the states where the resonance energies weakly
depend on n . The number of maxima on the τn0 curve
is defined by the number of decreasing energy regions
which is caused by the width of the external well:
the bigger the latter, the bigger is the number of
maxima in every τn0 curve. The effective sizes of the
barriers (through which a quasiparticle has to tunnel)
become bigger and the magnitudes of maxima also
increase (Fig. 3,b) because the decreasing energy
regions are located lower for a fixed state when n0
increases.

Fig. 4 shows the results of calculation of the
resonance energy En0 and electron lifetime τn0 as
functions of the second well thickness ∆2 when all
other sizes of the nanosystem are fixed. It is clear
from Fig. 4,a that the horisontal regions of the
En0 (∆2) dependences correspond to the states where
an electron is located in the HgS core. Electron lifetime
in these states is several orders bigger than that in
states where it is generally located in the potential
well 2 (decreasing energy regions).

In Fig. 5,b, the electron lifetime τn0 dependences
on the thickness of the first barrier ∆1 are presented
for fixed geometric sizes of other nanosystem parts.
The energy levels almost do not depend on the barrier
thickness and are formally depicted in the energy
scheme (Fig. 5,a) in those wells, where the electron
in the respective state is mostly located. Fig. 5 proves

Fig. 5. Scheme of electron potential energy location of resonance levels (a) and electron lifetimes dependences on barrier thickness ∆1  at
n0  =  15, ∆2  =  15, ∆3  =  5  (b)
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that the electron lifetimes in states | 100〉, | 300〉,
| 500〉 do not depend on barrier 1 thickness ∆1. In
states | 200〉 and | 400〉, the lifetimes are increasing
exponentially because of the 'power“ of the barrier
through which the electron in well 0 tunnels into the
external medium.

From the obtained results, one can make the general
conclusion. In the opened HgS/CdS/HgS/CdS/HgS
nanosystem under research, there are short- and long-
lived quasistationary resonance states. The location of
the respective levels on the energy scale strongly

depends on the sizes of potential wells and weakly
depends  on barriers’ sizes. Only in the long-lived
states,  the electron lifetimes strongly (exponentially)
depend  on the thickness of the potential barrier 1.
The lifetimes in all states exponentially depend on
the  thickness of the external barrier 3. In the radiation
spectra of opened spherical nanosystems, there are
reflected only those resonance states, the radiation
lifetime between which is much smaller than the
electron lifetime in this state.
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