The effect of electronic self-polarization in synchrotron radiation in the approximation of weakly excited state of an electron and a strong magnetic field is investigated. An essential difference of the process probabilities with spin reorientation of an electron along and opposite the field is denoted, which indicates a more expressed effect of self-polarization of electrons in comparison with the quasi-classical approximation.

Despite the fact that the sufficiently much literature was devoted to the investigation of quantum-electrodynamical processes with photons and electrons, this direction continues up to the present days to set the problems which don’t lose actuality both for experimental and theoretical research. The general relativistic theory of synchrotron radiation was constructed and investigated, and the common form of expressions describing this process was obtained in [1 - 5]. In particular, the problem was solved in [4, 5] with application of the operator method by analyzing the properties of the mass operator of an electron. However, it is necessary to mark that this process was described more in detail in the quasi-classical approximation.

Below, we use the relativistic system of units where $\hbar = c = 1$.

We take the following expression for the electron wavefunction in a uniform constant magnetic field H [11, 12]:

$$\Psi = \frac{A}{\sqrt{\pi}} \exp\left(-i\varepsilon_n t + ip_y r_y + ip_z r_z\right) \times$$

$$\times \left[i\sqrt{2n\varepsilon H}U_n(\xi) + (m + \mu \tilde{\mu})U_{n-1}(\xi)\gamma^1\right]u_n,$$ \(1\)

where ε_n is the energy of an electron in a magnetic field; p_y, p_z are the momenta of an electron along the y and z axes, respectively; S is the normalization area in the yz plane; $\xi = \sqrt{\epsilon H}(x + p_y/\epsilon H)$ is the displaced coordinate along a quantized direction x; e is the electron charge; $U_n(\xi) = \frac{1}{\sqrt{\sqrt{\pi} 2^n n!}} \times \times \exp\left(-\xi^2/2\right)H_n(\xi)$ is the Hermite function of order n; μ is the electron polarization which assumes the values ± 1; γ^1 is a Dirac matrix in the standart representation; $\tilde{\gamma}^2 = m^2 + 2n\epsilon H$; A is the normalization coefficient and u_n is the constant bispinor, their explicit forms are shown in [11].

The constant magnetic field H is directed along the z axis. Wavefunction (1) corresponds to a gauge of the external field where the 4-vector potential is defined as

$$A_0 = 0, \quad A = (0, Hx, 0).$$ \(2\)

The energy spectrum of an electron takes the form:

$$\varepsilon_n = \sqrt{m^2 + p_z^2 + 2n\epsilon H} = \sqrt{\tilde{m}^2 + p_z^2},$$ \(3\)
n is the principal quantum number (Landau level number), $n = 0, 1, 2, \ldots$. The differential probability of the process per unit time, in which the summation is performed over photon polarizations at various final states looks:

$$dW_{nn'} = | - ie \int d^4x \bar{\psi}(\xi') \gamma_\nu A_\nu \psi(\xi) |^2 \frac{1}{\mathcal{T}} d\mathcal{N} =$$

$$= \frac{\epsilon \omega}{\epsilon_\nu (\epsilon_\nu' + \omega u^2)} \left[\sum_{i = 1}^{\mathcal{N}} \Phi_i \right] du,$$ \hspace{1cm} (4)

where \mathcal{T} is a large time interval; $u = \cos \theta$ is the cosine of the angle between the directions of the magnetic field and the motion of the final photon; α is the fine-structure constant; $d\mathcal{N}$ is the number of final states which equals:

$$d\mathcal{N} = \frac{S \nu^2 k^2 d^3 p}{(2\pi)^3}.$$ \hspace{1cm} (5)

$$d^3p = dp_x dp_y dp_z; d^3k = \omega^2 d\omega dk du.$$

The components under the summation symbol in formula (4) have the form:

\[
\begin{align*}
\Phi_1 &= - \frac{\mu \mu' \eta n'(eH)^2}{(m + \mu m + 1, m + \mu m + 1)} J^2(n', n), \\
\Phi_2 &= - \frac{1}{4} \frac{\mu \mu' \lambda \lambda' (m + \mu m)(m + m)}{J^2(n', n - 1)}, \\
\Phi_3 &= \frac{n' \lambda (m + \mu m)(eH)}{2m m'(m + 1, m + 1)} (\epsilon_\nu \epsilon_\nu' - p_z p_z'u + \mu \mu' \tilde{m} m) \times \\
& \quad \times J^2(n', n - 1), \\
\Phi_4 &= \frac{n' \lambda (m + \mu m)(eH)}{2m m'(m + 1, m + 1)} (\epsilon_\nu \epsilon_\nu' - p_z p_z'u + \mu \mu' \tilde{m} m) \times \\
& \quad \times J^2(n' - 1, n - 1), \\
\Phi_5 &= - \sqrt{n n' \lambda \lambda' (eH) J(n', n) J(n' - 1, n - 1)}. \\
\end{align*}
\] \hspace{1cm} (6)

In Eqs.(4), (6), and further, by using symbol $(')$, we mark the final state of an electron (the state after the radiation process).

The probability of synchrotron radiation averaged over the polarizations of the initial electron and summed over the polarizations of the final electron has the form [13]:

$$\frac{d\mathcal{W}_{nn'}}{du} = \left[- m^2 J^2(n', n) + (pp' - m^2) \times \\
\times (J^2(n', n - 1) + J^2(n' - 1, n)) - \\
- 4m^2 nJ(n' - 1, n - 1)J(n', n) - \\
- m^2 J^2(n' - 1, n - 1) \right] \frac{\alpha \omega}{\epsilon_\nu (\epsilon_\nu - \omega(1 - u^2))},$$ \hspace{1cm} (7)

where $pp' = \epsilon_\nu \epsilon_\nu' - p_z p_z'$.

There are two conservation laws for the projection of the momenta p_x, p_z on the y, z axes and the conservation law for the energy of the process considered:

$$p_y = p_y' + k_y, \quad p_z = p_z' + k_z, \quad \epsilon_n = \epsilon_n' + \omega.$$ \hspace{1cm} (8)

The expression for the photon frequency in synchrotron radiation follows from the conservation laws (8):

$$\omega = \frac{(\epsilon_n - p_y u - \sqrt{(\epsilon_n - p_y u)^2 - 2(n' - n)(eH)(1 - u^2)}}{1 - u^2}.$$ \hspace{1cm} (9)

Integration over the x coordinate (quantized direction) in (4) brings to the appearance of special functions $J = J(n, m)$ (Laguerre functions) [2], the form of which is:

$$J(n, m) = \exp (- \eta 2) \times$$

$$\left[\eta(m - n)/2 \sqrt{m!} \frac{1}{(m - n)!} \right] \times$$

$$\times F(- n, m - n + 1, \eta), \quad m > n,$$

$$\left(- 1 \right)^m n (m - n)/2 \sqrt{\frac{n!}{m!}} \frac{1}{(n - m)!} \times$$

$$\times F(- m, n - m + 1, \eta), \quad n > m.$$ \hspace{1cm} (10)

Here, m and n are nonnegative integer numbers, and F is the confluent hypergeometric function which is a Laguerre polynomial accurate within a coefficient. The parameter η in (10) is determined as

$$\eta = \sqrt{\frac{k_x^2 + k_y^2}{2eH}} = \omega^2 (1 - u^2).$$ \hspace{1cm} (11)
It equals to the square of the product of the transversal projection of a photon wave vector to the direction of the magnetic field \(k \perp \) by a specific transverse size of the electron wavefunction \(R \) (Landau radius):

\[
\eta = (k \perp R)^2.
\]

We consider the radiation process in the strong external magnetic field with weakly excited electron states. Such an approximation implies the experimental distinguishing of Landau levels. It corresponds to the condition:

\[
\Delta n = 1,
\]

where \(\Delta n \) is the number of levels in the final states (5).

Nevertheless, we consider the value of the magnetic field to be much less than the critical Schwinger magnetic field \(H_0 = 4.41 \cdot 10^{13} \) Gauss:

\[
h = \frac{H}{H_0} \ll 1.
\] (13)

Hereinafter, we will suppose that \(p_z = 0 \). This condition doesn’t reduce the generality of the process under study because the transition to the reference system where \(p_z \neq 0 \) is always possible. In addition, the value of the magnetic field doesn’t change. Granting the proposed simplification and making the series expansion in the small parameter \(h \), we will rewrite the presented above expressions (3), (9), (11) in the approximation of synchrotron radiation by an electron in the weakly excited state (12).

The electron energy spectrum is:

\[
\varepsilon_n = m \sqrt{1 + 2nh} = m + mnh - \frac{1}{2} mn^2 h^2 + O(h^3). \quad (14)
\]

The frequency of photon radiation

\[
\omega = (n - n')m h - \frac{1}{2}(n - n')m [(n + n') +
\]

\[
+ (n - n')u^2] h^2 + O(h^3). \quad (15)
\]

It is obvious from (14) and (15) that, in the considered approximation, the electron energy takes nonrelativistic values:

\[
\varepsilon \approx m, \quad \omega \approx hm \ll m. \quad (16)
\]

Eq.(11) becomes

\[
\eta = \frac{\omega^2 (1 - u^2)}{2hm^2} = \frac{1}{2}(n - n')^2 (1 - u^2) h - \frac{1}{2}(n - n')^2 (1 - u^2) [(n + n') +
\]

\[
+ (n - n') u^2] h^2 + O(h^3). \quad (17)
\]

Since \(h \) is a small quantity, the parameter \(\eta \) in the ultra-quantum approximation

\[
\eta \ll 1. \quad (18)
\]

The explicit forms of the probabilities per unit time of the considered synchrotron radiation in approximation (12), (16), (18) under arbitrary polarizations of an electron \(\mu \) before and \(\mu' \) after radiation are:

\[
dW_{++} = \frac{\alpha m}{\hbar} \frac{(n - n')^2 (n - n') + (n - 1)!}{2(n - n') (n - 1)! (n - n')!} \times
\]

\[
(1 - u^2) (n - n' - 1) [1 + u^2] h(n - n' + 1),
\]

\[
dW_{--} = \frac{\alpha m}{\hbar} \frac{(n - n')^2 (n - n') + 1n_1}{2(n - n') (n - 1)! (n - n')!} \times
\]

\[
(1 - u^2) (n - n' - 1) [1 + u^2] h(n - n' + 1),
\]

\[
dW_{+-} = \frac{\alpha m}{\hbar} \frac{(n - n')^2 (n - n') + 3(n - 1)!}{2(n - n' + 1) (n' - 1)! (n - n')!} \times
\]

\[
(1 - u^2) (n - n' - 1) [1 + u^2] h(n - n' + 2),
\]

\[
dW_{-+} = \frac{\alpha m}{\hbar} \frac{(n - n')^2 (n - n') + 3n!}{2(n - n' + 3) (n - 1)! (n - n' + 1)!} \times
\]

\[
(1 - u^2) (n - n' - 1) [1 + (n - n')^2 u^2] -
\]

\[
- (3(n - n')^2 + 2(n - n') u^4) + (4(n - n')^2 + 6(n - n' + 4)] h(n - n' + 4). \quad (19)
\]

The analysis of the obtained expressions (19) shows that the probability of the process essentially depends on initial and final electron polarizations. The processes without reorientation of the electron spin are the most probable (the power of the small parameter \(h \) is the smallest) while the processes with a change of polarization (spin flip transition) are less probable (the power of the small parameter \(h \) is relatively higher) and in addition they have a different power of parameter \(h \). Also it is necessary to note that the most probable process among all the possible ones is the process of photon radiation with the electron transition.
to the adjacent energy level $\nu = (n - n') = 1$. Every
next increase of ν results in an additional power of
the parameter h in Eqs.(19) for differential proba-
bility. For the most probable transition $\nu = 1$, Eqs.(19)
take the form:

$$dW^+ - dW^- = \frac{\alpha m}{h} \left(\frac{1}{2} (n - 1)(1 + u^2)h^2, \right.$$

$$dW^+ - dW^- = \frac{\alpha m}{h} \left(\frac{1}{4} (n - 1)(1 + u^2)h^2, \right.$$

$$dW^+ - dW^- = \frac{\alpha m}{h} \left(\frac{1}{64} n(n - 1)(1 + 11u^2 - 5u^4 + u^6)h^5. \right.$$

Further, polarization effects connected with
reorientation of the electron spin will be considered. We introduce the parameter

$$\beta = \frac{dW^+ / du}{dW^- / du} = \frac{1}{16} n(n - 1) \left[1 + 11u^2 - 5u^4 + u^6 \right] \left(1 + u^2 \right)^2.$$

characterizing the difference of probabilities with spin
reorientation.

The radiation degree of electron polarization is
connected with the parameter β in the following way:

$$\zeta = \frac{dW^+ / du - dW^- / du}{dW^+ / du + dW^- / du} = 1 - 2\beta. \quad (22)$$

The parameter β versus both an angle of photon
radiation and an initial electron energy level n is given
in Fig.1. On the graph, a rise of the parameter β for
more excited electron states is seen. Also one can see
that photons are radiated in preference under an angle
to the direction of electron motion. In particular, at
$h = 0.1, n = 2, u = 0$, the parameter $\beta = 0.00125$ and
the radiation degree of polarization $\zeta = 0.9975$.

It is necessary to mark that, in the quasi-classical
approximation in the process of synchrotron radiation
with spin reorientation, there are about ten electrons
with spin -1 (spin-down state) accounted for one
electron with spin $+1$ (spin-up state) in the final state.
As a result of synchrotron radiation, only 92% of
electrons have the spin oriented against the direction
of the magnetic field [2]. Here, the effect of self-
polarization doesn’t depend on the value of the
magnetic field. In the ultra-quantum approximation in
the considered process with spin reorientation, there
are nearly 1000 electrons with spin -1 accounted
for one electron with spin $+1$ in the final state at
$h = 0.1$. Also we note that the probabilities ratio β
depends on the value of the magnetic field and is
proportional to h^2.

Fig.2 shows the differential probabilities dW^+ / du and dW^- / du per unit time versus both
the angle of photon radiation and initial electron energy
level n. It is seen from the graph that electrons with
the initial spin directed along the magnetic field
participate predominantly in the process of photon

\begin{align*}
\text{Fig.1. Parameter } \beta \text{ versus both angle of photon radiation and initial} \\
electron energy level } n \\
\end{align*}
radiation with spin reorientation. The probability of the photon radiation for electrons with the opposite spin relative to the direction of the magnetic field is less and it increases comparatively slightly with the initial energy level.

We must note that, in the considered approximation (12), (16), (18) unlike the quasi-classical case [2], the effect of self-polarization essentially depends on the value of the magnetic field H and radiation angle u.

The essential difference in the process probabilities for electrons with spin reorientation (22) can be explained by analyzing the expression for the distribution of the probability density with a definite energy level:

$$j^0 = |\Psi|^2 = 2eA\alpha(e - \mu\hbar)(2n\hbar m^2 U_n^2 + (m + \mu\hbar)^2 U_n^2 + 1).$$ \hspace{1cm} (23)

For two electrons which are on the adjacent energy levels $n_1 = 1$ and $n_2 = 2$ but with the contrary values of spins, the following expressions in approximation (12), (16), (18) take place:

$$j^0 = 2\xi^2 + \left(\frac{1}{2} - \xi^2\right)h + O(h^2), \quad n_1 = 1, \mu = -1,$n_2 = 2, \mu = 1.$$

$$j^0 = 2\xi^2 + \left(\frac{1}{2} - 4\xi^2 + 2\xi^4\right)h + O(h^2), \quad n_1 = 1, \mu = 1.$$

(24).

As one can see, the expressions for j^0 at zeroth order of the small parameter \hbar coincide in both cases. The similar situation holds also in the following cases with more excited states of an electron. Thereby, the following equality is true:

$$|\Psi^+|^2 = |\Psi^-|^2, \quad n = 0, 1, 2, \ldots$$ \hspace{1cm} (25)

By applying the additional quantum number

$$N = n - \frac{1}{2} - \mu, \quad n = 0, 1, 2, \ldots$$ \hspace{1cm} (26)

one can rewrite (25) in terms of N:

$$|\Psi^N|^2 = |\Psi^N|^2.$$ \hspace{1cm} (27)

One sees from (27) that the quantum number N characterizes the spatial distribution of electron probability density while the principal quantum number n describes the electron energy spectrum.

There are two cases of the synchrotron radiation process with spin reorientation in the indices of the principal quantum number n and quantum number N schematically depicted in Fig.3. Fragments (a and b) correspond to the considered process with electron spin reorientation against and along the direction of the magnetic field. In Fig.3, we see that, in the first case (fragment a), the distribution of electron probability density doesn’t change during radiation. While, in the second case (fragment b), one can observe a change of the distribution of electron probability density and the reduction of the quantum number N by 2. As was marked supra, the transition onto a lower Landau level brings to the appearance of an additional power of \hbar in the equations for the process probabilities (19), (20). This fact explains the difference in probabilities by two orders of the small parameter \hbar in (19), (20).

Integrating over the angle α of photon radiation, the total probabilities of synchrotron radiation at various electron polarizations can be put into the form:

$$W^{++} = \frac{\cos \alpha}{\hbar} \frac{4}{3} (n - 1)\hbar^2, \quad n = 2, 3, 4, \ldots$$ \hspace{1cm} (28)

$$W^{--} = \frac{\cos \alpha}{\hbar} \frac{4}{3} n\hbar^2, \quad n = 1, 2, 3, \ldots$$

$$W^{+-} = \frac{\cos \alpha}{\hbar} \frac{2}{3} \hbar^3, \quad n = 1, 2, 3, \ldots$$

$$W^{-+} = \frac{\cos \alpha}{\hbar} \frac{5}{42} n(n - 1)\hbar^5, \quad n = 2, 3, 4, \ldots$$ \hspace{1cm} (29)

The total probability of the process averaged over polarizations of an initial electron and summed over polarizations of a final one has the form:

$$W = \frac{1}{2} \sum_{\mu, \mu'} \frac{1}{2} W_{\mu\mu'}^{\mu\mu'} = \frac{2}{3} \frac{\cos \alpha}{\hbar} (2n - 1)\hbar^2$$
It can be noted that the obtained expressions (28) for the probabilities of synchrotron radiation with the exception of W^- at the least possible value of the principal quantum number n to within a coefficient ~ 1 coincide with analogous expressions well known in the quasi-classical approximation. In particular, the value $1/W^+$ coincides with the polarization time and $1/W$ with the emission time of photons [9].

The authors are grateful to P.I. Fomin for his constant help in holding this work and also to S.P. Roshchupkin for useful discussions.

The work partly was supported by the State Fund of Fundamental Researches.