
INTERFACE EFFECTS IN THE MODEL 
OF δ-POTENTIAL FOR DILUTED MAGNETIC
SEMICONDUCTOR QUANTUM STRUCTURES

F. V. KYRYCHENKO,    Yu. G. SEMENOV1

UDC 539

‰ 2001 

Institute of Physics, Polish Academy of Sciences
(Al. Lotnikow 32/46, 02668, Warsaw, Poland),
1 Institute of Semiconductor Physics, Nat. Acad. Sci. of Ukraine
(45, Nauky Prosp., Kyiv 03028, Ukraine)

We further develop the recently proposed model of interface δ-
potential in nonmagnetic/semimagnetic semiconductor
heterostructures. We calculate the parameters of the δ-potential

(applied to the description of the interface paramagnetic
enhancement effect) using a smooth approximation of the interface
potential. We propose useful analytic approximations of the
magnetic field, temperature, and magnetic ion concentration de-
pendences of the δ-potential intensity for the CdTe/ Cd1  −  xMnxTe-

interface. Our calculations have proved the recent hypothesis about
a Brillouin-like magnetic field dependence of the intensity of the
δ-potential. It is shown that the approach allows one to satisfactorily

describe the interface effects in diluted magnetic semiconductor
quantum structures in terms of only one free parameter, the
interface width ∆L if. The obtained formulas are used to describe

some experimental results from the present literature. It is shown
that our theory provides good agreement with experimental data.

Introduction

It is known that realistic interface profiles in semicon-
ductor heterostructures are not perfectly sharp. This
is either due to non-ideality of technology or due to
diffusion processes at the interface region. On the other
hand, the interface effects play an important role in
the formation of electronic states in semiconductor
quantum wells (QW). For example, the  asymmetry
of interface potentials in QW results in the possibility
of observation of forbidden optical  transitions due to
the breaking of a potential symmetry (see [1, 2]).

In the case of diluted magnetic semiconductor (DMS)
quantum structures, the interface can be responsible
for some other effects. One of them is the effect of
paramagnetic enhancement of giant spin splitting
(GSS) of excitonic spectra in QW with semimagnetic
barriers (see [3] and references therein). This is due
to the fact that non-ideality of interface leads to
increasing in local magnetization in the interface
region, which, in turn, gives rise to an enhancement
of the effective exchange field Ge(h) acting on the spin
of the electron (hole) comprising an exciton. The
contribution of this additional magnetization to the
spin-splitting of excitonic states is comparable with the
total excitonic GSS.

So, generally speaking, if we deal with DMS quantum
structures, we need to take into account the interface
effects. To do this, one have to solve a 1D  Schro

..
dinger

equation. Since the interface potential is not of a simple
form, only a numerical solution is possible. In the case
of hole states in DMS QW for the arbitrary magnetic
field B orientation, we need to solve the system of
four Luttinger equations. Once more, only a numerical
solution is possible. The latter problem is, of course,
very computer-intensive. The simple model of δ-
potential has been proposed in [4, 5] to describe the
contribution of a non-ideal interface to the Hamiltonian
of the system. This model is based on the assumption
that the characteristic length of the interface potential
∆L if is much smaller than the QW width Lw. It allows
one to approximate the interface contribution to the
electron (hole) energy by the δ-potential and to
calculate the characteristics of electron and hole states
in QWs with DMS barriers analytically both for
B| | C and B ⊥  C, where C is the QW growth direction.
Some parameters of the δ-potential introduced in [4,
5] were considered as fitting ones.

In the present paper, the parameters of the δ-
potential are calculated in terms of a smooth
approximation of interface potential. A useful analytic
approximation of the magnetic field dependence of the
intensity of the δ-potential is proposed in the case of
CdTe/ Cd1 −  xMnxTe-interface. The obtained formulas
are shown to provide a quantitative description of
experimental results.

Calculation of Interface Potential

The possibility to introduce the interface δ-potential
is based on the following speculation. Consider
Ψ(z) as an exact wave function of the appropriate
Schr o

..
dinger equation for an electron in QW of width

Lw. Then, the contribution of the interface potential
Uif(z) to the electron energy is expressed by

E if =  ∫  
 −  ∞

∞
 | Ψ(z)| 2Uif(z)dz.

(1)
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If the typical electron (hole) localization length in a
QW growth direction (z-direction) Lw is longer than
∆L if (see Fig.1), Ψ(z) can be expanded in the vicinity
of the interface at the point z =  Lw/ 2. The first non-
vanishing term of this expansion in Eq.(1) reads

E  
if
(0) =  Aif| Ψ(Lw/ 2)| 2 ,    Aif =  ∫  

 −  ∞

∞
 Uif(z)dz. (2)

It is seen that E if
(0) exactly corresponds to the

contribution of the interface Hamiltonian

Ĥ if =  Aif δ ( z −  Lw/ 2) (3)

which is proportional to the δ-function. The factor
Aif is a function of magnetic field B and depends on
a specific distribution of magnetic ions at the interface
region. The magnetic field dependence of Aif was
assumed in [4, 5] to be in the form of a modified
Brillouin function with two free parameters T if and
S if. Below we do not use this assumption. Rather, we
calculate the amplitude Aif for different values of
temperature T  and magnetic field B in terms of the
model (developed in [3]) taking the interface spread
into account. The main task of this work is to determine
the magnetic field dependence of the factor Aif and
to check the validity of the assumption of the Brillouin-
like dependence of Aif used in [4, 5].

First, we need to determine a specific spatial
distribution of magnetic ions in the vicinity of the
interface. For definiteness, we consider the
CdTe/ Cd1 −  xMnxTe-interface. In the present
literature, there is no consent about the profile of the
Mn ions distribution at the interface region. The
exponential profile (described by segregation) and the
error function profile (determined by diffusion

processes) were discussed most commonly (see [3]).
We choose the error function profile to describe the
local concentration of Mn ions:

x(z) =  
x0

2
  


erf




z
2∆L if





 +  1



 ≡  

≡  
x0

2
 




2
√π      ∫  

0

z/ (2∆L if)

   exp ( −  t2)dt +  1




. (4)

Here, x0 denotes the molar concentration of Mn ions
in the barrier far from interface region.

In the mean field approximation, the Hamiltonian
of an electron (hole) in the DMS quantum structure
has the form

Ĥe(h) =  T̂ e(h) +  Ve(h) +  Ge(h)Se(h), (5)

where the first and second terms describe
(respectively) the electron (hole) kinetic and potential
energies, while the last term represents the Zeeman
energy of a carrier in the exchange field
Ge(h) =  Je(h)x(z) 〈SMn〉. Here, Je(h) and SMn are the

exchange constant and spin of Mn2+  ions, respectively.
In the case of B| | C, the term with exchange interaction
is actually an additional potential for an electron (hole)
with spin projection σ:

Ue(h)(σ,  z) =  Ve(h)(z) +  σGe(h)(z). (6)

We obtain (for each value of magnetic field) the
interface potential Uif(z) needed to calculate Aif
according to Eq.(2), by subtracting the ideal interface
potential Uideal(z) (step function) from the real
interface potential profile Ureal(z) (see, Fig.2). The real
potential profile was calculated in the spirit of [3] by
taking (at each point z =  z0) the values of the potential
Ureal(z0) for a bulk Cd1 −  xMnxTe crystal with
x  =  x(z0). The position of the step function
Uideal(z) ~  Θ(z −  zif) was determined from the
condition Aif(B =  0) =  0. In the case of the Mn
distribution described by Eq.(4), this procedure results
in zif =  0.

The calculations are performed for the set of
parameters ∆L if, x0 and temperature T . As an example,
we plot the magnetic field dependence of the parameter
Aif

e  for the CdTe/ Cd0.85Mn0.15Te-interface with
∆L if =  1  A°  for three different temperatures
T  =  1,  2.5, and 8 K (solid lines) in Fig.3.

In [4, 5], the magnetic field dependence of Aif was
approximated by the modified Brillouin function
B5/ 2 with two free parameters ∆ l =  ∆L ifS if and T if.

Aif
e(h) =  Je(h)Se(h) x0∆L ifS ifB5/ 2  





(5/ 2) g µBB

kB(T  +  T if)




.
(7)

Fig.1. Potential energy and wave function of the electron ground state in
a non-ideal rectangular quantum well with error function profile of
interfaces. Model of interface δ-potential is based on the assumption that
∆L if << Lw
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Here, Je =  220 meV and Jh =   −  880 meV are the
carrier-magnetic ion exchange constants for

Cd1 −  xMnxTe DMS, respectively, Se(h) =   ±  
1
2

 are

electron (heavy hole) spin projections. The parameters
S if and T if in Eq.(7) denote the effective spin and
temperature of magnetic ions at the interface. We have
to calculate S if and T if to reduce the number of free
parameters in Eq.(7). It is easy to see that the Mn
distribution in the vicinity of the interface in form (3)
simply results in the relation Aif ~  ∆L if. The form of
Eq.(7) also provides the explicit temperature and
magnetic field dependence of the parameter Aif. This
allows us to consider the effective parameters S if and
T if as functions of Mn concentration in the barrier
x0 only. Our analyses show that these dependences
can be represented by:

S if =  x0[ 19.63 exp ( −  27.81x0) +  

+  8.955 exp ( −  4.474x0) +  0.217] , (8)

T if =  




0 ,                                                      x0 <0.13 ,  
3.687 tanh[ 3.112(x0 −  0.13)] ,   x0 ≥  0.13. (9)

The dashed lines in Fig.3 represent the results of
calculation of Aif

e  using Eqs. (7) ¯ (9). It is seen that
the approximated curves differ slightly from those
obtained according to Eq.(2) (solid lines). Note also
that the remaining free parameter ∆L if in Eq.(7)
uniquely determines the interface profile via Eq.(3).
This situation is opposite to the case of Refs. [4, 5]
where ∆L if represents the characteristic length of
interface potential only.

However, the differences between the results of
numerical integration and analytic expressions (Eqs.
(7) ¯ (9)) are noticeable in Fig.3. It can be shown
that the difference of two modified Brillouin functions
(one of them corresponds to bulk GSS) approximates
the obtained magnetic field dependence of Aif more
accurately:

Aif
e(h) =  Je(h)Se(h)x0∆L if





SeffB5/ 2 




(5/ 2) g µBB

kB(T  +  T eff)




 −

Fig.2. Typical shape of the interface potential Uif(z) obtained by subtracting the ideal interface potential Uideal(z) (step function) from the real interface
potential profile Ureal(z), a ¯ without magnetic field (that corresponds to A if =  0), b ¯ in the magnetic field (A if ≠  0)
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−  S0B5/ 2 




(5/ 2)g µBB 

kB(T  +  T 0)




 



. (10)

Here, the parameters S0 =  S0(x0) and T 0 =  T 0(x0)
describe the magnetization of a bulk Cd1 −  xMnxTe
crystal with molar fraction on Mn ions x  =  x0. In our
calculations, we use the expressions for S0(x0) and
T 0 =  T 0(x0) from [3]. The effective parameters Seff
and T eff in Eq.(10) depend only on x0 (similar to

S if and T if in Eq. (7)) and can be represented in the
form:

Seff =  
0.466

x0
 [ 1 −  exp ( −  5.29213 x0)]  −  0.19227, (11)

and

T eff =  3.5 tanh (3.2353 x0). (12)

The result of calculation of Aif
e  using Eqs. (10) ¯ (12)

is reported in Fig.3 by dotted lines.

Comparison with Experiment

As was mentioned above, the model of interface δ-
potential allows one to analytically describe the
interface contribution to electron and hole Zeeman
splitting in the DMS QWs both for B| | C and B ⊥  C.
The corresponding theory is developed in [4, 5]. Now
we apply the above approach to description of some
experimental results available in the literature.

The GSS of excitonic reflectivity spectra in the
Faraday configuration (B| | C) in
Cd1 −  xMnxTe/ CdTe/ Cd1 −  xMnxTe quantum struc-
tures with Lw =  88  A°  (QW width), x0 =  0.22 and
Lw =  30  A° , x0 =  0.18 are reported in [6]. In Fig.4,
we compare the experimental data (symbols) with the
results of our calculations (lines) using Eqs. (10) ¯
(12). Only one fitting parameter ∆L if =  7.2  A°  for the
first structure and ∆L if =  3.4  A°  for the second allows
us to obtain a fairly good agreement with the
experiment.

In Fig.5, we compare the results of our calculations
of exciton spin splitting in 75  A°  wide
Cd0.95Mn0.05Te/ CdTe/ Cd0.95Mn0.05Te QW in the
Voight configuration with experimental data on
reflectivity spectra from [7]. Positions of excitonic lines
as a function of the magnetic field B ⊥  C are plotted
by symbols. Lines represent the results of our
calculations using the model of interface δ-potential
with the parameter ∆L if =  2.5  A° . One can see that our
approach describes both heavy and light hole Zeeman
splittings quite well.

Conclusions

A further development of the model of interface δ-
potential has been performed for DMS quantum
structures. The magnetic field dependence of the
intensity Aif of δ-potential for various temperatures,
barrier heights, and interface widths has been
calculated for CdTe/ Cd1 −  xMnxTe-interface. It have
been verified that this dependence can be approximated
with reasonable accuracy by a modified Brillouin
function with two fitting parameters S if and T if in con-

Fig.4. GSS of heavy hole exciton energies in the Faraday configuration
for 30  A° -wide Cd0 .8 2Mn0 .1 8Te/ CdTe (curves 1, 4) and 88  A° -wide
Cd0 .7 8Mn0 .2 2Te/ CdTe (curves 2, 3) quantum wells (from [6]). Open

symbols correspond to σ+  polarization and solid symbols to σ−  one. Lines
are the calculations in the model of interface δ-potential using Eqs. (10)
¯ (12) with ∆L if =  7.2  A°  for wide QW and ∆L if =  3.4  A°  for narrow QW

Fig.3. Magnetic field dependence of the parameter A if
e  (S e =   +  1/ 2) for

CdTe/ Cd0 .8 5Mn0 .1 5Te-interface with ∆L if =  1  A°  for three different
temperatures T  =  1, 2.5, and 8 K. Solid lines are calculated using
Eq.(2), dashed ones correspond to the analytic approximation by Eqs.
(7) ¯ (9). Dotted lines present the analytic approximation using
Eqs.(10) ¯ (12)
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formity with assumptions of [4, 5]. The useful analytic
approximations for the magnetic field dependence of
the interface intensity Aif have been proposed. We have
also shown that the effect of paramagnetic
enhancement in DMS quantum structures can be
satisfactorily described in a simple way with only one
free parameter ¯ interface width ∆L if. It is evident

that the approach developed in the present work can

be applied to other DMS quantum structures and
physical phenomena in DMS QWs: tunneling effects
[8], superlattices [9], magnetic polaron effects [10],
etc. Sometimes, the criteria of validity of the developed
approach are broken down or are not evident.
Nevertheless, we believe that the considered model can
also be applied in these situations if one treats it as
a simple phenomenological description of the
paramagnetic enhancement effect in the DMS quantum
structures.
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Fig.5.  Exciton  energies  in  σ  ( circles)   and   π   ( triangles)   polarizations
in the magnetic field B⊥ C. The
Cd0 .9 5Mn0 .0 5Te/ CdTe/ Cd0 ,9 5Mn0 .0 5Te QW has a width of 75  A°  [ 7] .
Lines are the results of calculations using Eqs. (10)¯(12) with
∆  L if =  2.5 A°
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