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A variant of the Einstein ¯ Cartan theory, in which a perfect fluid

and a non-minimal coupling scalar field are the sources of torsion,

is considered. The exact solutions for closed cosmological models

with allowance for the stiff fluid have been obtained. It is shown

that non-singular models are possible in some cases. The influence

of material sources on the character of evolution of the models is

discussed.

Introduction

It is well known that the problems of general relativity
(GR) and the standard cosmological scenario
stimulated the development of other relativistic theories
of gravity. Some progress has been made in the actual
variant of the Poincare gauge theory of gravity, the
Einstein ¯ Cartan theory (ECT), in eliminating
certain difficulties of GR, and in constructing viable
cosmological models (see, for example, [1 ¯ 4] and
references therein).

In the present paper, we investigate the variant of
ECT, which simultaneously takes into consideration
two sources of torsion: a perfect fluid and a non-
minimally coupled scalar field. These sources rather
ofter have been considered as models of matter
distributions, for example, in GR. Supplementary
interest to a non-minimally coupled scalar field in the
relativistic theories of gravity is connected with its role
in inflationary cosmology and its presence in GUT
models and Kaluza ¯ Klein theories.

In the framework of two-torsion ECT, we consider
homogeneous isotropic closed cosmological models with
a non-minimally coupled scalar field with a nonlinear
potential and two perfect fluids, one of which is a
stiff fluid and the other is the source of torsion.

1. Basic Equations

The Lagrangian L of the model is chosen as the sum
of Lagrangians: gravitational ¯ Lg, scalar field ¯
Ls, and perfect fluids ¯ Lfl(1) and Lfl(2):

Lg =  −  R  (Γ)/ 2 κ, (1)

Ls =  
1

4π  




αs

2
 [ Φ,kΦ,k +  ξ R  (Γ) Φ2]  −  V (Φ)





, (2)

Lfl(1) =  −  ρ (c2 +  Π ( ρ,  e)) +  k ∇i

Γ
 ( ρui) +  

+k1(ui u
i −  1) +  k2ui∂iX  +  k3ui∂ie. (3)

Here, R  (Γ) is the curvature scalar obtained from the

full connection Γij
k  =  




k
ij

 



 +  S ij⋅

k  +  S ⋅ ij
k  +  S ⋅ ji

k ; 



k
ij

 



 are

Christoffel symbols of the second kind; S ij⋅
k  =  Γ[ ij]

k  is

the torsion tensor; κ =  8 π G/ c4 is the Einstein’s
constant; αs =  +  1 conforms to the material scalar
field; αs =  −  1 corresponds to the 'gravitational“
scalar field [3 ¯ 6]; ξ is a coupling constant;
V (Φ) is the potential of the scalar field; ρ is the perfect
fluid mass density; Π ( ρ,  e) is its internal energy; k,
k1, k2, k3 are the Lagrange multipliers; X  is the
Lagrangian coordinates of the matter particles; e is
the entropy per volume [7]; ui is the four-velocity;

∇i

Γ
 is the covariant derivative of the Riemann ¯ Cartan

space. The Lagrangian Lfl(2) for the stiff fluid is not
indicated since there is no torsion vector for it in the
derivative of the term, which regulates the conservation
of the number of particles.

FIELDS, ELEMENTARY PARTICLES

ISSN 0503-1265. Ukr. J. Phys. 2001. V. 46, N 12 1235



In the paper, the metric gik has signature (-, -, -,
+), the Riemann and Ricci tensors are defined as
R ijk⋅

m  =  Γjk,i
m  −  Γik,j

m  +  Γip
mΓjk

p  −  Γjp
mΓik

p , R jk =  R ijk⋅
i . It

follows from (3) that the torsion can interact with a
perfect fluid only through its trace: S i =  S ik⋅

k  (the vector
of torsion). An analogous result has been derived [5]
for a scalar field. Hence, the curvature scalar can be
presented in the form:

R  (Γ) =  R  ({}) +  4 S ;k
k  −  

8
3

 SkSk, (4)

were R  ({}) is the Riemannian part of the curvature
built from Christoffel symbol; semicolon denote the
covariant derivative of the Riemannian space.

One can note that Lagrangian (2) in the torsionless
case at ξ =  1/ 6 and V (Φ) =  0 conforms to the
conformally invariant scalar field. As shown in [5],

when αs =  −  1, ξ =  −  1/ 6, V (Φ) =  −  
1
2

 µ2Φ2, the

scalar field corresponding to Lagrangian (2) is an axion
field in GR. From the viewpoint of QCD, the interest
to the axion field is based on the fact, that it leads
to a compensation of strong CP violation effects; from
the viewpoint of cosmology, it is a cold dark matter
candidate (see, for example, [5, 8] and references
therein).

Varying the action with the Lagrangian
L =  Lg +  Ls +  Lfl(1) +  Lfl(2) in gij, Sk, Φ, ρ, k, ki, X ,

e, u i, we obtain the following set of equations for the
gravitational fields and matter:

Gij ({}) =  κ (T  ij
fl(1) +  T  ij

fl(2) +  T  ij
s ) +  Λ ij, (5)

Sk =  
3
2

 Ψ (2 π αsΘ uk +  ξ Φ Φ,k), (6)

  Φ −  ξ Φ R  (Γ) +  αsV′  =  0, (7)

εfl(1) +  Pfl(1) +  ρu i (∂i +  2 S i ) k =  0, (8)

∇i

Γ
 ( ρu i) =  0, (9)

ui u
i =  1, (10)

u i∂i X  =  0, (11)

u i∂i e =  0, (12)

(k2u i);i =  0, (13)

∂ εfl(1)/ ∂ e +  (k3u i);i =  0, (14)

−  ρ ∂i k −  2 k ρ S i +  2 k1ui +  k2∂i X  +  k3∂i e =  0,
(15)

where

T  ij
fl(1) =  (εfl(1) +  Pfl(1)) ui uj −  Pfl(1) gij, (16)

T  ij
fl(2) =  (εfl(2) +  Pfl(2)) ui uj −  Pfl(2) gij, (17)

T  ij
s  =  

αs

4 π  {Φ,i Φ,j −  
1
2

 [ Φ,m  Φ,m  +  ξ R  ({}) Φ2 −

−  2 αsV (Φ)]  gij +  ξ [ −  2 S i∇j −  2 S j∇i +  2 gij S
n∇n −  

−  ∇i∇j +  gij   +  R ij ({}) −  Λ ij]  Φ2}, (18)

Λ ij =  
8
3

 S i S j −  
4
3

 Sk Skgij, (19)

εfl(1) =  ρ (c2 +  Π ( ρ,  e)),      Pfl(1) =  ρ2∂ Π/ ∂ ρ. (20)

Here, the εfl is the perfect fluid density; Pfl is its
pressure;  and ∇i are D’Alembertian operator and
covariant derivative of the Riemannian space,
respectively; Ψ =  κ (4 π αs −  ξ κ Φ2)−  1; Θ =  k ρ;

V′  =  ∂V/ ∂Φ. By contracting Eq. (15) with u i and using
Eqs. (8), (10) ¯ (12), we find

2 k1 =  −  (εfl(1) +  Pfl(1)). (21)

Finally, Eqs. (8) and (9) give

(Θui);i =  −  (εfl(1) +  Pfl(1)). (22)

Excluding torsion with the help of Eq. (6), a closed
subsystem of Eqs. (5), (7) and (22) is derived. In
the framework of GR, this subsystem describes the
gravitational interactions of two perfect fluids and a
non-minimally coupled scalar field with the potential
V (Φ).

2. Exact Cosmological Solutions

For homogeneous isotropic closed models with the
metric

ds2 =  a2 (η) [ dη2 −  dr2 −  sin2 r (dθ2 +  sin2θ dϕ2)] (23)

Eqs. (5) and (7) take the form

2 
a′ ′
a

 −  
a′2

a2
 +  1 =  Ψ [ 2 ξ Φ Φ′′  +  2 ξ 

a′
a

 Φ Φ′  +  

+  


−  
1
2

 +  2ξ +  3 ξ2 Φ2 Ψ) Φ′2 +  αsa
2V (Φ) −

A. M. GALIAKHMETOV

1236 ISSN 0503-1265. Ukr. J. Phys. 2001. V. 46, N 12



− 12 (π Θ a)2 Ψ]  −  4 π αs Ψ a2 (Pfl(1) +  Pfl(2)), (24)

a′2

a2  +  1 =  Ψ 








1
6

 −   ξ2 Φ2 Ψ



 Φ′2 +  2ξ 
a′
a

 Φ Φ′  +  

+  1
3

 αs a
2V (Φ) +  4 (π Θ a)2 Ψ




 +  

+  4
3

 π αs Ψ a2 (εfl(1) +  εfl(2)), (25)

(1 −  6 ξ2Φ2Ψ) (Φ′′  +  2 
a′
a

 Φ′) +  αs a
2V′  −  

−  12 π αs ξ a2 Φ Ψ (Θ u k);k +  6 ξ 




a′ ′
a

 +  1




 Φ +  

+  24 π ξ Ψ2Φ (−  κ−  1 αs ξ Φ′2 +  π a2Θ2) =  0, (26)

where the prime denotes the differentiation with
respect to η.

We confine ourselves to considering the perfect fluid,
which induces torsion with the vacuum equation of
state: Pfl(1) =  −  εfl(1). Then, from (20) and (22), we
obtain

εfl(1) =  C1,      Θ =  CΘ a−  3, (27)

where C1, CΘ are integration constants, (C1 > 0).
For the stiff fluid, we have

εfl(2) =  Pfl(2) =  C2 a−  6,         C2 =  const. (28)

The scalar field potential V (Φ) is chosen in the
form:

V (Φ) =  β 
µ2

2
 Φ2 +  

λ
4!

 Φ4. (29)

Here, µ and λ are constants; β =  +  1 conforms to a
massive scalar field, β =  −  1 corresponds to a Higgs-
type nonlinearity.

The exact solutions have been obtained for positive
value of the Einstein’s effective constant

κeff =  
κ

1 −  
αsξ
4 π  κ Φ2

 > 0, (30)

provided that

λ =  
6
π  ξ2 κ2 C1,            µ2 =  4 κ | ξ |  C1.

(31)

2.1. Solutions with a 'Gravitational“ Scalar Field

The exact partial solutions have been obtained under
the supplementary condition √3  κ2 C1 CΘ =  4. For
ξ < 0, β =  −  1, the solution is

a =  a0 √1 +  λ1
2 t2 ,       Φ =  B 

λ1t

√1 +  λ1
2t2

, (32)

were a0=  a (t =  0)=  (2/ κ C1)1/ 2, λ1 =  (κ2c/ 2) ×
×  (C1

3C2| ξ | )1/ 2, B =  (4 π/ κ | ξ | )1/ 2, t is the cosmo-
logical time (a (η) dη =  cdt).

Solution (32) corresponds to the non-singular model
with amin =  a0, Φ0 =  Φ (t =  0) =  0, and the
asymptotics: a | t → ±  ∞  ~  ±  t, Φ | t → ±  ∞  → ±  B.

For ξ > 0, β =  1, the solution may be written as
follows:

a =  a0 √1 −  λ1
2t2 ,        Φ =  B 

λ1t

√1 −  λ1
2t2

. (33)

 It is easy to see from (33) that amax =  a0, Φ0 =  0,

and the model is singular at t =  ±  λ1
−  1 (a = 0,

Φ =  ∞ ).

2.2. Solutions with Material Scalar Field

Exact partial solutions have been obtained under the
condition κ3C1

2 (3 κ CΘ
2  +  8C2) =  16. For ξ < 0, β =

=  +  1, the solution is

a =  a0√1 −  
1
2

 sin2 λ2t ,      Φ =  B 
tg λ2t

√2 +  tg2λ2t
, (34)

where λ2 =  √2  λ1, and the expression for a0 is the
same as above.

Solution (34) describes the oscillating Universe with
the period T  =  π λ2

−  1. The scale factor a changes from
amin =  a0/ √2  (Φmin =  B ) to amax =  a0  (Φ0 =  0) .

For ξ > 0, β =  −  1, the solution may be written as
follows:

a =  a0√1 +  
1
2

 sinh2 λ2t ,      Φ =  B 
sinh λ2t

√2 +  sinh2λ2t
. (35)

It follows from (35) that this solution conforms to
the non-singular model (amin= a0, Φ0=  0) and has the

asymptotics:  a| t→ ±  ∞   ~  e±  λ2 t,   Φ | t → ±  ∞   ~  → ±  B.
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3. Solutions for Two-Fluid Cosmological Models without
Scalar Field

Now let us consider the closed models with two-fluid
without scalar field. The general exact solution of the
Einstein ¯ Cartan’s field equations is obtained by
quadrature:

∫  
a2da

√s1a6 −  a4 +  s2 +  s
 =  ±  ct, (36)

where s1 =  
1
3

 κ C1, s2 =  
1
3

 κ C2, s =  
1
4

 κ2 CΘ
2 .

The analysis of solution (36) shows that, for any
s,  s1, s2, besides the case where these parameters are
connected with the constant D by relation

s1D3 −  D2 +  s2 +  s =  0, (37)

the solution has the asymptotics

a | t → 0  ~   t 1/ 3,        a | t → ±  ∞  ~   e±  σt, (38)

where σ =  cs1
1/ 2.

Under condition (37), cosmological models of two
types are possible:

1) a non-singular model with amin =  D1/ 2 under the

additional condition 0 < D < 2 (3 s1)−  1 and the
exponential asymptotic of type (38);

2) a singular model with the asymptotics

a | t → 0 ~   t 1/ 3,       a | t → ±  ∞  → D1/ 2, (39)

where D =  2 (3 s1)−  1, s +  s2 =  4 (27 s1
2)−  1.

It is necessary to note that, for singular models of
type (38) and (39), the solutions have been obtained
in two cards: t ∈  (−  ∞ ,  0) and t ∈  (0, +  ∞ ).

Conclusion

In this article, a variant of the Einstein ¯ Cartan
theory with two sources of torsion, the perfect fluid
and non-minimal coupling scalar field, has been
constructed. The proposed theory can be treated as
a generalization of the standard Einstein ¯ Cartan
theory with one torsion source.

As an application  of the theory, isotropic closed
cosmological models with allowance for the stiff fluid
have been considered.

In the one-torsion case where the torsion is
generated by a perfect fluid with the vacuum equation
of state, the general exact solution in quadratures has
been obtained. It is shown that both singular and non-
singular cosmological model are possible.

In the two-torsion case, the partial exact solutions
have been obtained. It is detected that, as distinct
from the one-torsion one, the number of non-singular
models increases and an oscillating model is possible,
in particular.

In the one-torsion case, the presence of the stiff
fluid does not tell decisively on the evolution of models.
But, in the two-torsion one, all solutions have been
obtained only when the stiff fluid is taken into account.
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