
INFLUENCE OF CONSTANT MAGNETIC FIELD 
ON ENERGY SPECTRUM OF RYDBERG ATOMS

V. N. MAL’NEV,    A. P. FOMINA
1

UDC 538.4+529.45 

‰ 2001

Taras Shevchenko Kyiv National University, Faculty of Physics
(6, Academician Glushkov Prosp., Kyiv 03022, Ukraine),
1Bogolyubov Institute for Theoretical Physics
(14b, Metrolohichna Str., Kyiv 03143, Ukraine)

We develop the hypothesis about the coherent quantum origin of

the decameter radiation of the system Jupiter ¯ Io that may

explain its very high brightness temperature. The typical magnitude

of a magnetic field in the system produces the necessary value of

the cyclotron frequency ωc that is close to the experimentally

observed one and corresponds to the quantum transitions between

Landau levels. A possible source of this radiation is the transitions

in the spectrum of highly excited hydrogen atoms (Rydberg atoms)

that has a narrow band of almost equidistant levels (Landau quasi-
levels) in a constant magnetic field. This part of the spectrum is

calculated by a new nonperturbative method. We discuss also an

additional formation mechanism of Rydberg atoms in a dusty

plasma.

Introduction

The extremely high pick power in a pulse (about
1011 W) of the decameter electromagnetic radiation
of the system Jupiter ¯ Io that corresponds to the
bright temperature up to 1017 K witnesses in favor
of the collective coherent regime of generation. The
quantum nature of this radiation apparently was first
discussed in [1] and was associated with the transitions
of electrons between the Landau levels formed in the
magneto-active space plasma.

It was suggested that such an inverse population
of electrons is produced by external sources: solar
radiation, space shock waves, and so on. But any actual
realization of the magneto-active plasma with the
inverse population of Landau levels as an active
medium is hampered by the equidistant character of
these levels. In [1], it was assumed that a widening
and shifting of Landau levels due to fluctuations of
the plasma fields may provide the necessary conditions
for the coherent amplification of electromagnetic
radiation at the cyclotron frequency ωc. The necessary
intensity of coherent radiation may be gained while
it travels through large distances of cosmic systems.

In this paper, we consider the influence of a constant
magnetic field on the energy spectrum of highly excited
hydrogen atoms. It is shown that, near the ionization
threshold, where the energies of Coulomb attraction
and magnetic field are equal by magnitude, the electron
energy spectrum has a narrow band of levels with equal
spacing. This is the so-called quasi-Landau regime that
is characterized by a limited set of level spacings

q 
h− ωc

2
 (q is an odd integer, ωc is the cyclotron

frequency) [2 ¯ 3].
We would like to note that the planar problem of

the energy spectrum of an electron in Coulomb and
constant magnetic fields allows one to separate the
radial and angular motion but reduces to a multistep
recurrent relation. The quantization procedure is not
transparent in this case. To solve this particular prob-
lem, a special method that may be called the method
of auxiliary Hamiltonians [4] was developed. It will
be used in this paper. Then we pass to the three-
dimensional case and, in conclusion, consider the
mechanism of formation of the Rydberg atoms in a
dusty plasma in the process of electron-ion
recombination on the surface of grains.

1. Energy Spectrum of Hydrogen Atom in Magnetic Field
(Two-Dimensional Problem)

Here, we use the method of auxiliary Hamiltonians
[4] that has already been successfully applied to the
anharmonic oscillator and double-well potentials. It
consists in estimating the energy levels of a given prob-
lem using the exact energy eigenvalues and
eigenfunctions of a sequence of auxiliary Hamiltonians
that are practically indistinguishable from the
Hamiltonian of interest.

Using the Coulomb units and cylindrical coordinates
( ρ,  φ ,  z), the main task in the planar case is to solve
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a radial Schrodinger equation with the Hamiltonian

ĥ =  −  




d2

d  ξ2  +  
1
ξ  

d
d  ξ





 +  
α2

4
 ξ2 +  

m 2

ξ2  −  
2
ξ . (1)

Here, we have set

ρ =  ν ξ,     ν =  
h− 2

µe2
,     α =  

h− ωc

2R
,     ωc =  

| e |  B
µc

,

R  =  
µe4

2 h− 2
     and     ε =  

E
R

 −  αm . (2)

E is the energy eigenvalue, and B is the applied
magnetic field in the z-direction. The angular part of
the wave function is eimφ  (m  ¯ is the magnetic
quantum number). Instead of Hamiltonian (1), we
introduce a new auxiliary Hamiltonian

h
__

 =  h +  2 γ λ ξ3 +  λ2 ξ4. (3)

This Hamiltonian is more complex than (1) but it may
be solved exactly by using polynomial solutions. The
yet unspecified couplings γ and λ will be found to be
positive, extremely small, and quantized. The higher
the power of a polynomial the closer the auxiliary
solutions to the exact eigenvalues of the initial
Hamiltonian (1). The eigenvalues ε

_
 of Hamiltonian (3)

will thus be stringent upper bounds to those of h. The
radial wave functions R

__
  of (3)  will turn out to be

polynomials with suitable weights. This will enable us
to convert ε

_
 into the even further improved estimates

of true eigenvalues ε.
Setting

R
__

 =  ξ| m  |  exp 


−  


β ξ +  
γ ξ2

2
 +  

γ ξ3

3








  ∑ 
n =  0

∞
 an ξn (4)

and selecting

γ2 +  2 β λ =  
α2

4
, (4a)

we get the folowing 4-term recursion relation with
successive coefficients:

n  (n  +  p −  1) an +  [ 2 −  β (p +  2n  −  2)]  an −  1 +  

+  [  ε
_
 +  β2 −  γ (p +  2n  −  3)] an −  2 +  [ 2 β γ −  λ (p +

+  2n  −  4)] an −  3 =  0,    p =  2 | m  |  +  1. (5)

Unfortunately, there are no general methods to solve
such equations. We note that (5) allows
V =  ∑  an ξn to be a polynomial of degree k provided
that

 ak ≠  0,  ak +  1 =  ak +  2 =  ak +  3 =  0. (6)

Feeding (6) into (5), we immediately get

λ =  2 β γ / (p +  2k +  2). (7)

Then the conditions ak +  2 =  0 and ak +  3 =  0 be
rewritten respectively as

[  ε
_
 +  β2 −  γ (p +  2k +  1)]  ak +  2 λ ak −  1 =  0 (8a)

and

[ 2 −  β (p +  2k)] ak+  [  ε
_
 +  β2 −  γ (p +  2k −  1)] ak −  1+

+  4 λ ak −  2 =  0. (8b)

Combining (4) and (7), we get a quadratic equation
for γ, whose admissible solution is

γ =  √4 β4

(p +  2k +  2)2
 +  

α2

4
 −  

2 β2

(p +  2k +  2) . (9)

Four unknowns β, γ, λ, and ε
_
 are uniquely fixed

by (7) ¯ (9) such that V  is a polynomial of degree
k and the wavefunction is characterized by a  given
value of m  (i.e., p). Such solutions, therefore, involve
the tuning of the auxiliary couplings γ and λ but the
magnetic field α is left arbitrary. Eliminating γ and
λ in favor of β by using (7) and (9), the remaining
task is to solve (8a) and (8b) for ε

_
 and β. Note that

all ak, ak −  1, and ak −  2 can be expressed in terms
of ε

_
, β, α, p, and k and, through a repeated use of

the recursion relation (5), a0 can be normalized away.
We thus arrive at two coupled algebraic equations for
ε
_
 and β which can be solved for any choice of p, k,

and α numerically.
The polynomial solutions of the auxiliary problem

and the associated energy eigenvalues can thus be
determined. Other solutions of the auxiliary problem
are power series solutions that do not interest us here.
Our studies will be confined to the case of magnetic
fields, for which α ≤  5 ⋅  10−  5.

The outcome of the analysis of (8a) and (8b) can
be described as follows.

For k = 0, these equations can be solved analytically,
remembering that a2 =  a3 =  0. We have β =  2/ p and

ε
_
 =  −  β2 +  γ (p +  1). Notice that β has exactly the

same form as in the pure Coulomb case.
For low lying levels (n  = k + | m  | are small),

the numerical solutions reveal that it suffices to retain
only the first terms in (8a) and (8b), so that β remains
essentially Coulomb. We have

β ≈  βc =  
1

n  +  1/ 2
,   ε

_
 ≈  −  βc

2 +  2 γ (n  +  1). (10)
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By expanding γ in powers of α (see (9)), we find

ε
_
 ≈  −  βc

2 +  
α2

4
 [ 20 (n  +  1/ 2)2 −  12 m 2 +  7]  + ` (11)

in complete accord with the first-order perturbation
theory near the Coulomb limit, i.e., for α → 0. The
auxiliary couplings being O (α), this result is to be
expected.

As we move along the spectrum, n  increases, and
the expansion of γ in powers of α ultimately breaks
down. Here, we have a vivid demonstration of how
the Coulomb perturbation theory is naturally vitiated
as we move the spectrum towards the threshold, how-
ever small α may be. The breakdown occurs below
the threshold. This can be checked using (9).

In the neighborhood of the threshold, one finds that
β tends to deviate from βc. However, this departure
is rather small. Hence, right up to the threshold, it
continues to remain realistic to set βc. The parameter
λ remains exceedingly small. Whereas it was O (α)
for low lying levels, it begins to approach the oscillator-
dictated value, α/ 2, for higher levels. This is not
unexpected. Hence, even at the threshold, the auxiliary
couplings 2 γ λ and λ are negligible. In essence, the

problem of h
__

 is hardly distinguishable from that of h
right up to the threshold region. The energy
eigenvalues ε

_
 of h

__
, being strict upper bounds of the

corresponding ε of h, are, at the same time, useful
estimates of ε. Further, we shall refine on these
estimates.

First, with the discussion of the previous paragraph
in view, (10) continues to provide an accurate account
of the spectrum in the threshold region. With
n  >> 1, we can write the corresponding relations as

β ≈  1/ n ,    ε ≈  ε
_
 ≈  −  β2 +  2 γn .

Hence,

E
R

 ≈  −  
1

n2  +  2 γ n  +  α m . (12)

For n  >> | m  |  and E  ≈  0, e.g., we have

2 γ n3 ≈  1. (13)

But, from (9), on the other hand,

γ ≈  √1

n6
 +  

α2

4
 −  

1

n3
. (14)

Thus, at the threshold, one finds 

α n3 ≈  √5 . (15)

Using (12) ¯ (15), it easily follows that

 ∆  E
h− ωc



E  =  0

 ≈  
√5  ∆  n  +  ∆  m

2
. (16)

So that, for ∆  n  =  ∆  m  =  1, 

 ∆  E
h− ωc



E  =  0

 ≈  1.6. (17)

Thus, we obtain the level spacing that is very close
to 3/2. The case n , | m  |  >> 1 can be similarly
discussed. Several other characteristic spacings can also
be read from (16). A more careful numerical analysis
of (10) is easily carried out. It reveals that the spacing
of 1.5 h− ωc is approached in a small energy band

5 h− ωc in width immediately above E  = 0.
This auxiliary contribution to the energy can be

efficiently neutralized in a very elementary manner.
The auxiliary couplings are very small, and we have
the exact associated polynomial eigenfunctions of h

__
.

These functions are clearly good substitutes for the
unknown planar eigenfunctions. We can use them to
more exactly compute ε. In the spirit of the perturbation
theory, one may subtract the leading contribution of
auxiliary terms from ε

_
, i.e., the quantum mechanical

average 〈 2 γ λ ξ3 +  λ2 ξ4〉. One then finds that, indeed,

the region of the 1.5 h− ωc spacing is around E  = 0.
An illustrative sample of energies in the threshold
region, so calculated, is displayed in Table for two
typical values of α.

We have used (10) in full, and the required integrals
have been carried out numerically. A closer look at
this limited set of date already reveals the spacing of
1/ 2 h− ωc (n  = 0, m  = 1) and 5/ 2 h− ωc (n  = 2, m  =
1) in the E  = 0 region.

The principal features of our studies are best
summed up so far before we turn to the 3D problem.
We have found that the first term in 8a provides an
accurate expression for energy that works at least up
to the threshold region for the case of realizable field.
The behavior of the parameter γ embodied in (9)
divides this part of the spectrum into the perturbative
and nonperturbative domains. The auxiliary terms
make the contribution to be quite small as compared
to the oscillator contribution that turns out to be about
n  (n  >> 1) and has been included exactly. This makes

n m E ∆  E n m E ∆  E

43 13 3.612 ¯ 34 10  2.705 ¯
42 12 2.127 1.485 33  9  1.216 1.49
41 11 0.617 1.51 32  8 ˜0.3055 1.52
40 10 ˜0.921 1.54 31  7 ˜ 1.865 1.56
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the subtraction procedure adopted above quite
reasonable. With the auxiliary contributions so
neutralized, the numerical analysis (see Table)
suggests that the guidance formula of Eq. (16) is better
replaced by the relation

 ∆  E
h− ωc



E  =  0

 ≈  
2 ∆  n  +  ∆  m

2
. (18)

Although, all spacings of the type q/ 2 h− ωc (q is an
odd integer) are realizable near E  = 0 via dipole
transitions, the density of level pairs that contribute
to the q = 3 transitions far exceeds those for which
q > 3. However, on the basis of the population density
of a level pair alone, the q = 1 transitions should be
intense. Next,  note that the  q/ 2 h− ωc spacing has
emerged as a feature of this separable problem itself.
Further, one finds that the spacings are slightly spread
out around the values q/ 2 h− ωc, larger for E  < 0 and
smaller for E  > 0. Hence, it is quite conceivable that
the crossover occurs exactly at E  = 0. Lastly, the
spacings also show a small field dependence.

Three-Dimensional Model of a Rydberg Atom in the
Magnetic Field

We now turn to the nonseparable 3D case. Here, we
have to solve the eigenvalue problem of the operator

h ≡  h 0 −  
α2

4
 r 2 cos2 θ, (19)

where

h 0 =  −  




d2

dr 2
 +  

2
r

 
d
dr





 +  
l (l +  1)

r 2
 +  

α2

4
 r 2 −  

1
2

. (20)

Spherical polar coordinateds (r,  θ,  φ) have been
employed and the dimensionless radial variable in the
Coulomb units has been denoted by r.

The eigenvalue problem h 0 R0 =  ε0 R0 is amenable
to a treatment exactly in parallel to that of the planar
case with only changes p =  2l +  2, n  =  k +  l +  1 now.
Thus, instead of (10), we have

β ≈  βc =  
1

n  +  1
,   ε0 ≈  −  β2 +  2 γ (n  +  3/ 2). (21)

Hence, all the features, discussed for the planar
case, re-emerge for the problem of h0. The problem
of h retains these features without any noteworthy
modifications. This assertion will now be justified. The
difference between h and h 0 is a term proportional

to α2r 2cos2 θ. This renders the problem to be
nonseparable and, in principle, the electron can escape.
However, α is extremely small for practical fields and
the probability of escape should be negligible.

Consider, in particular, states dominantly localized in

the θ ≈  π/ 2 region. For these, 〈cos2θ〉 << 1.

Further, for pure Coulomb states, 〈r 2 〉 ~  n4. The
magnetic field can be expected to localize the states

even further. Near the threshold, αn3 ~  1. Combining

these facts, we see that 〈α2 r 2 cos2θ 〉 << n . Hence, as

compared to the oscillator contribution of r2 to the
energy, this contribution can simply be ignored.
Eventually, the quasi-Landau spacings are again given
by (18) with n  = k + l + m .

Conclusions

Our findings can be summed up as follows: the
spectrum up to the threshold regime can be reasonably
well understood by dividing the full Hamiltonian into
a spherically symmetric part and a residual term that
breaks spherical symmetry. The Zeeman term can be
trivially incorporated. For practical fields, the spherical
part contains all the bulk features of the spectrum and
can be studied by the conventional quantum approach.
The nonspherical part is incapable to change the results
so obtained concerning the spacing near the threshold
region in any significant manner.

This remains true provided that the magnetic field
does not deform low lying wave functions, and the
ionization threshold is associated with high principal
quantum numbers. In this situation, we deal with
Rydberg atoms that are basically planar.

At the end, we would like to indicate that Rydberg
atoms may be produced in the process of three-particle
recombination. Their lifetime is comparatively large,
and the population may be maintained by the Sun’s
ultraviolet radiation. There is one more mechanism
of formation of a non-equilibrium population of excited
atoms in the process of electron-ion recombination on
the surface of dusty inclusions in a plasma. Dusty
particles are available in a space plasma of the system
Jupiter ¯ Io due to the volcano activity. It is known
that dusty particles may accumulate a negative charge

corresponding to 102 ¯ 103 electrons per grain with
a typical size of order of 1 µ. According to [5], the
system 'surface ¯ electron ¯ ion“ may be treated
as a quasimolecule. It may decay into a neutral atom
and a charged grain with one electron less. The most
probable formation of  atoms with the electron energy
equal to the energy of an electron on the surface of
the grain. If we assume that the coupling energy of
an electron on the grain surface is of order of
10−  2 eV, then hydrogen atoms will be dominantly
formed in the state with the principle quantum number
n  = 40 that, according to the results of the numerical
calculation given in Table, corresponds to the region
of ionization threshold. A dipole transition from this
state is possible that corresponds to ∆  m  =  1. But the
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problem of the equal spacing of Landau levels is
removed.
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