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It is well established [1] that the main features of
the collective nuclear dynamics at low excitation energy
are globally described within the so-called Bohr
Hamiltonian approach [2] involving five components
of the quadrupole deformation tensor. A considerable
effort has been devoted to obtain, in a microscopic
fashion, seven functions of two intrinsic deformations
(e.g., the β and γ parameters) entering the Bohr
Hamiltonian. One way to tackle the problem has taken
the time-dependent Hartree ¯ Fock ¯ Bogolyubov
(TDHFB) approximation in the adiabatic limit
(ATDHFB) as a starting point. It was initiated in the
pairing plus quadrupole approach of Kumar and
Baranger [3] and cast later in a broader perspective
by Baranger and Veneroni [4]. The other class of
approaches has made use of the generator coordinate
method (GCM) with further approximations of the
Gaussian overlap approximation (GOA) type [5 ¯ 8].
In all practical realistic applications so far, using full-
fledged effective interactions of the Skyrme or Gogny
type, one has limited oneself either to zero-pairing
cases in the so-called adiabatic time-dependent Hartree
¯ Fock (ATDHF) limit (see, e.g., [9]) or to
perturbative mass parameter calculations of the Inglis
¯ Belyaev type [10, 11], i.e., neglecting the so-called
Thouless ¯ Valatin self-consistent terms [12]
generating the time-odd part of Hartree ¯ Fock ¯
Bogolyubov potentials through the time-odd part of
the density matrices. The results discussed here
belongs to the last category. Starting from the more
general point of view of the full ATDHFB method,
we present recent advances made in the understanding
of current versions of the Inglis ¯ Belayev mass prob-
lem. We focus mainly on many cases where such mass
parameters exhibit strong variations over an interval
of the considered collective variable which is small with
respect to a characteristic range of variation of the
associated potential energy curve. In that context, we
discuss two origins for such a behavior as well as their
physical consequences. This will be illustrated in the
generic case of axial quadrupole motion.

The starting point is the matrix expression of the
TDHFB  equation  of  motion  in  a doubled space

[13, 14]:

ih−  
∂R
∂t

 =  [ H ,  R ] , (1)

with the generalized Hamiltonian matrix H  and density
R  denned from the Hartree ¯ Fock h and pairing
fiedls ∆ , on the one hand, and from the normal ρ
and abnormal density matrices k, on the other hand,
with usual notation as:

R  =  




ρ       k
 −  k∗     1 −  ρ∗





,      H  =  




      h          ∆
 −  ∆∗    −  h∗





. (2)

For a Bogolyubov quasi-particle vacuum, it is known
[15] that R  is Hermitian idempotent (i.e., projector)
operator. This allows one, as noted in [4] and
explicated in [16], to make use of the so-called
Baranger ¯ Veneroni theorem [4]:

R (t) =  exp (i χ(t))R0(t) exp ( −  i χ(t)), (3)

where both R0 and χ are Hermitian and time-even,
allowing thus an expansion of R  in terms of χ as
performed in the Hartree ¯ Fock case within the
normal (i.e., non-doubled) space.

We perform now the same set of further
approximations which were made in the nonpairing-
correlated case (see, e.g., [17]), namely:

1. adiabatic expansion of R  around R0 up to the
second order in χ,

2. dynamical reduction of the time-dependence of
the TDHFB solution through only one (here) or a few
collective variables,

3. a priori choice of this collective variable to keep
contact with the original Bohr Hamiltonian approach,
for example, the expectation value q of the axial
quadrupole moment operator Q20.

Upon making the adiabatic expansion mentioned
above (approximation 1), one can split the TDHFB
equation of motion, Eq.(1), into a time-even part and
a time-odd part. Again as in the ATDHF case, we
further assume that the R0-part of the solution of the
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time-even equation of motion is given by a constrained
HFB (CHFB) problem where the time-even
constraining field is precisely the operator whose
expectation value is the chosen collective variable
(approximations 2 and 3), i.e., Q20 in the above
example. Then it is obvious to generalize the result
of, e.g., [9] to show that once the set of q-dependent
R0 matrices is known, one gets R1, the first order
(time-odd) part of R , by solving a double CHFB
equation:

δ〈Ψ| H  −  λQ −  2 
dq
dt

P| ψ〉 =  0 (4)

with a generalized cranking operator P defined as

P =  
ih− 
2

 




∂R0

∂q
,  R0





. (5)

This operator P assumes, of course, the same
2 ×  2 matrix structure as the density R , for instance,
and can be shown to be of the form:

P =  
ih− 
2

 







ph   p∆

p∆∗
    ph∗








. (6)

We will now perform two last approximations. The
first consists in neglecting the Thouless ¯ Valatin
corrections that is the self-consistent response H1 due
to the R1 part of the generalized density matrix
(leaving thus the time-odd constraint q P as the only
time-odd operator in the variational problem). In a
second step, we approximate the static solution R0 by
a self-consistent BCS solution at each time as defined
and justified in [7].

We have calculated all matrix elements in the
canonical basis (the basis of the eigenstates of ρ0).
Therefore, our results, for the mass parameters in
particular, are given in terms of single particle energies
(of the Hartree ¯ Fock type) and pairing gaps, making
them rather transparent and easy to compare with
results obtained in their approaches. This feature
makes our approach different from the work of
Dobaczewski and Skalski [18] which have presented
potentially similar results (apart from the self-
consistency of our approach with the restriction, how-
ever, that theirs have included in some approximate
way the Thouless ¯ Valatin corrections) in a matricial
form which is rather compact and then somewhat hard
to connect with usual single particle spectroscopic
properties.

Neglecting, as mentioned above, the Thouless ¯
Valatin self-consistency, a solution of the time-odd part
of the ATDHFB equations of motion can be obtained
explicity. It is formally a system of two coupled

equations giving ρ1 and k1 in a matricial form as

functions of the ph and p∆ constraining operators:

[ h0,  ρ1]  −  ∆0k1
∗ +  k1∆0

∗ =  

=  ih− q{| ph,  ρ0|  −  p∆k0
∗ +  k0 p∆∗},

−  ∆0 ρ1
∗ −  ρ1∆0 +  h0k1 +  k1h0

∗ =  

=  ih− q{ ph,  k0 −  k0 ph∗
 +  p∆ −  p∆ρ0

∗ −  ρ0 ρ∆}, (7)

which we have to project onto four subspaces labelled
with obvious notations ( µ,  ν), ( µ

__
,  ν), ( µ,  ν

_
 ), ( µ

__
,  ν

_
 ),

where | µ
__

〉 is the time-reversed of the state | µ〉.
Out of some manipulation which will be detailed

in a forthcoming publication, one can express the
matrix elements of ρ1 and k1 in terms of matrix

elements of the ph and p∆ operators which themselves
may be expressed in terms of matrix elements of the
derivative of ρ0 with respect to q so that:

ρ1µν =  ρ1µ
__

 ν
_ =  

i h− q
Eµ +  Eν

 pµν
H  =

 =  
i h− q

Eµ +  Eν
  

(υµ
2 −  υν

2)

(uµυν +  uνυµ)2
 




∂ρ0

∂q



 µν

, (8)

k1µν
_ =   −  k1ν

_
µ =  

i h− q
Eµ +  Eν

 pµν
∆  =  

 =  
i h− q

Eµ +  Eν
   

(uµυµ +  uνυν)

(uµυν +  uνυµ)2
  




∂ρ0

∂q



 µν

. (9)

The mass parameter which we note M P(q) is deduced
from the part of the total energy which depends
quadratically on the collective velocity and may be
written as:

M P(q) =  
1
q

 tr (R1P). (10)

Making use of the above-summarized results, one
may show that

M P(q) =  2h− 2 ∑ 
µ,  ν

′   


1
Eµ +  Eν





  
1

(uµυν +  uνυµ)2   




∂ρ0

∂q



 µν

2

,

(11)
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where the summation ∑ 
µν

′  restricts the considered space

to half of the one-particle space1 .
In the particular case of global rotation, where the

cranking operator is well known [12] and given within
the so-called Routhian approach, it is easy to show
that one retrieves the Belyaev [11] version of the Inglis
[10] cranking formula.

Upon solving the static HFB equation associated with
Eq.(1) by using a time-even constraint ( −  λQ) or, in
other words, with a vanishing collective velocity
(q =  0), one gets two independent equations relating
the matrix elements of the Hartree ¯ Fock and pairing
fields (h0,  ∆0) and those of the normal and abnormal
associated densities ( ρ0,  k0). Using the projector

equation (R2 =  R ), after differentiating them with
respect to q, one finally gets the following relations
expressing the matrix elements of ∂ ρ0/ ∂q as functions
of ∂∆0/ ∂q and ∂h0/ ∂q:





∂ρ0

∂q



 µν

 =   −  
(uµυν +  uνυµ)2

Eµ +  Eν
 








∂h0

∂q



 µν

 −  

−  
1 −  υµ

2 −  υν
2

(uµυµ +  uνυν)
 




∂∆0

∂q



 µν

 

, (12)

from which one may express the mass parameter as

M P(q) =  2 h− 2 ∑ 
µ,  ν

′  1

(Eµ +  Eν)
3

 



(uµυν +  uνυµ) 





∂h0

∂q



 µν

−

−  (uµυν +  uνυµ)




∂∆0

∂q



 µν

_
 


2
. (13)

The presentation of this second form of the mass
parameter has three purposes:

i) First, since it involves derivatives of potentials
and not of the normal density as in Eq.(11), upon
comparing both results for mass parameters, it allows
one to assess the accuracy of the numerical calculation
of these derivatives.

ii) Moreover, it provides a theoretical frame in which
one can compare our mass parameter M P of Eqs.(11)
and (13) with the one (noted here M Q) consistently
used over the years by some groups (as the group in
Bruyeres¯le¯Chatel) which have developed
microscopic approaches to large-scale collective modes

in nuclei [7, 8, 20, 21], using the Gogny force [22]
in the HFB approximation as a starting point. In the
noncorrelated case, it was shown [23, 24] for fully
self-consistent ATDHF solutions that the mass
parameter is given by

M ATDHF(q) =  
h− 2

2
   

M −  3
RPA(Q)

[ M −  1
RPA(Q)] 2 . (14)

The approximation used in the above-referred
papers consists in replacing the RPA moments
M −  3

RPA(Q) and M −  1
RPA(Q) in Eq.(14) by their

perturbative value (i.e., neglecting the rearrangement
effects both static and of the Thouless¯Valatin type),
namely, for BCS wavefunctions:

M n(Q) = ∑ 
µ,  ν

′  (uµυν +  uνυµ)2(Eµ +  Eν)
n| 〈 µ| Q| ν〉| 2,(15)

writing therefore:

M Q(q) =  
h− 2

2
  

M −  3(Q)

2 [ M −  1(Q)] 2 . (16)

It is clear that, when suppressing a part of self-
consistency, the above and our approach have no longer
to yield identical results. It is easy to check that this
mass M Q [Eq.(16)] is nothing but our mass M P if
one neglects all static rearrangements in the potentials
so that the only non-vanishing term in Eq.(13) is due
to the time-even constraint λ Q.

iii) Thirdly, starting from the expression of Eq.(13),
we will be able below to trace back the microscopic
origins of the observed violent fluctuations of the mass
parameters as functions of the collective variables.

For the rest of the paper, we will limit ourselves
to the study of the axial quadrupole mode, using the
D1S  parametrization [25] of the Gogny force. Tests
of numerical accuracy will be detailed in a forthcoming
publication. We simply mention here that the CHFB
calculations have been performed by projection of
single-particle states on an axially symmetric harmonic
oscillator basis whose spring constant has been
optimized for each deformation, while its deformation
parameter was interpolated from optimized values on
a loose mesh [the basis size corresponds to 11 (13,
resp.) major shells for rare earth (actinide, resp.)
nuclei]. The numerical derivatives (of the normal
densities) have been performed by a three-point
formula taking into account the results of three self-
consistent calculations performed in the vicinity of the
deformation under scrutiny. Their accuracy has been
assessed by the existence of a plateau of the mass
parameter in terms of the chosen quadrupole moment
intervals which are involved as well as by comparing,

1
In a preliminary account [19] of these results, a mishandling of the

time reversal properties of the matrix elements of the p
1 1

 operator has
lead to introducing an erroneous very small corrective term in the
expression of the mass as given in Eq.(11).
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as already mentioned, the masses resulting from
Eqs.(11) and (13). As a result, it may be evaluated
to be much less than one percent in regions where
the mass is moderately varying with deformation and
up to some percent in regions of strong variations (peak
regions).

One sees that violent variations of the mass
parameters are expected either when the pairing field
or the Hartree ¯ Fock field is rapidly changing. We
illustrate below each of these two situations. In Fig.1,

the masses M P and M Q are shown for the nucleus
110Cd where the usual deformation parameter β is
deduced from the calculated quadrupole moment of
the mass distribution. The total energy is also
displayed, showing that large oscillations of the mass

M P occur close to the equilibrium deformation of this

rather solf nucleus. It clearly appears that M P exhibits
variations which are absent in M Q. In the upper part

of Fig.2, the proton contribution to M P is compared
with its neutron counterpart for prolate deformations.
The former is responsible for two peaks appearing at
β ≈  0.14 and β ≈  0.20. The explanation for these peaks
lies, as shown also in Fig.2, in the existence of an
unpaired region for protons. In quite general terms,
one may show that the peaks occur near the transition
on the superfluid side (here slightly above β ≈  0.14
and slightly below β ≈  0.20). The fact that the
derivative of the pairing field ∂∆0/ ∂q is responsible
for the discussed structure is also demonstrated in this
figure where its contribution to the proton component

of the mass parameter M P is separated from the
contribution of ∂∆0/ ∂q.

A similar situation is found for the rare earth nucleus
150Gd. One observes three extremely high peaks in

M P in the upper part of Fig.3 near the deformation
β ~  0.7 and culminating more than one order of
magnitude above the peaks observed in neighboring
nuclei or in other deformation regions in the same

nucleus. Again, M Q does not exhibit such dramatic
variations. As shown in the medium and lower parts
of Fig.3, these peaks are also correlated with pairing
phase transitions, but now for both protons and
neutrons. Furthermore, one notices an accidental
conjunction of the disappearance of neutron pairing

Fig.1. Quadrupole axial vibrational mass parameters M P(β) and M Q(β)
for the usual quadrupole deformation parameter β taken as a collective
variable are displayed (scale on the left) together with the total energy
ECHFB (scale on the right) for the 1 1 0Cd nucleus as functions of β

Fig.2. For the 1 1 0Cd nucleus, as functions of the deformation β, the
proton (dotted line) and neutron (solid line) components of the β-
vibrational mass parameter M P(β) are displayed in the upper part, while
the medium part shows the corresponding proton (resp., neutron) pairing
energies expressed as  −  tr∆0k0 . Contributions of the type 〈dh0 〉 (solid

line) and 〈d∆0 〉 (dashed line) to the proton component of M P(β) are
displayed in the lower part
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with the reappearance of the proton pairing which
yields a pile-up of two peaks, thus resulting in a strong
middle peak. The fact that this phenomenon occurs
precisely in phase with the calculated superdeformed
secondary minimum may entail amusing consequences.
One expects indeed that the corresponding collective
wavefunction will be anomalously squeezed. It is worth
noting that such double phase transitions and therefore
such strong peaks, as already mentioned, are not
observed in neighboring Gd isotopes (see Fig.3) in

the superdeformation region. Taking into account
roughly the Coriolis antipairing effect, such a double
phase transition is also possible at a medium spin in
148Gd and may be in 152Gd but not in other isotopes
in the superdeformed region. It so happens, on the
other hand, that the rather elusive phenomenon of
staggering in the gamma rays of some superdeformed

bands is only found near this 150Gd isotope [26, 27].
As a possible explanation for such a staggering, the
authors of [28] have proposed a zero point motion
associated with the quantization of intrinsic vortical
modes in highly rotating nuclei. On the other hand,
through an analogy [29] with the Aharonov ¯ Bohm
phase effect at work in the persistent currents observed
in mesoscopic rings (see [29] for references), they
have related the scarcity of this staggering with a
damping effect due to the spreading in the deformation
space of the intrinsic superdeformed wave function.
In this context, the reduction of the width of the
superdeformed collective wave function precisely near
the 150Gd isotope is to be mentioned. It may be also
interesting to note that such strong peaks have not
been found in our calculations for nuclei where such
a staggering has been finally excluded as in the
A ~  190 region (see, e.g., [30]) or is only tentatively
proposed with irregular behavior as in the
superdeformed states of nuclei with A ~  130 [31].

Let us illustrate now the appearance of structures
in the mass parameters related with variation of the
Hartree ¯ Fock field. In Fig.4, one shows that they
exist for M P, and again not for M Q, in the case of
the 238U nucleus on the prolate side of the deformation
energy curve specifically near the first fission barrier
(i.e., for a value of the mass quadrupole moment

Fig.3. In the upper part, for the 1 5 0Gd nucleus, β-vibrational mass
parameters M P(β) (solid line) and M Q(β) (dashed line) corresponding
to the left hand side scale are displayed as functions of the deformation
parameter (β), together with the total energy ECHFB (dotted line)
corresponding to the right-hand side scale. Pairing energies (here
defined as ˜tr∆0k0 ) of 1 4 8Gd (solid lines), 1 5 0Gd (dashed lines), and
1 5 2Gd (dotted lines) related to neutron (resp., proton) distributions are
displayed on the medium (resp., lower) part of this figure as functions of
the deformation parameter β

Fig.4. For the 2 3 8U, as functions of the quadrupole moment in units
1.5104  fm2 , the quadrupole vibrational mass parameters M P(q) (solid
line) and M Q(q) (dashed line) are displayed together with the total
energy. Here and in the following figure, contrarily, to what was the case
in previous ones, the retained collective variable is the quadrupole
moment q of the mass distribution
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slightly below 5000 fm2). Equating the contribution
of the derivative of the pairing field to zero, one
retrieves most of the mass parameter (see Fig.5) which
demonstrates that this peak stems from a rapid
variation of the Hartree ¯ Fock field. As a matter
of fact, the latter is due to the conjunction of many
single-particle crossings for both proton and neutron
mean fields around this particular deformation. Such
a dramatic situation is by all means not generally
encountered near the top of fission barriers in other
actinide nuclei. Strong peaks in the mass under fission
barriers can, of course, yield a significant change in
the collective lifetime for the fission isomer decay into
the ground state valley. As an example, upon using

the actual approximate expression M P of the ATDHFB
mass parameter for 238U instead of M Q in the
calculation of the E2 isomeric transition rate (according
to the method of [32], equivalent in this one-
dimensional case to what is used in [33] taking apart
the question of the choice made for the mass
parameter), one decreases the corresponding lifetime
by slightly less than two orders of magnitude. Most
of this can be related to the peak under the barrier,
the rest being due to other variations of the mass

M P in the second well introducing a change in the
relevant collective wave function model structure.

As a conclusion, M P mass parameters do exhibit
strong variations which can be correlated to rapid
variations of either pairing correlations or single
particle properties near the Fermi surface. The physical
consequences are governed by the time scale for the
collective modes. In general, the width of the collective
wave function is relatively larger than the characteristic
collective extension of such mass variations, so that
they are just smeared out fluctuations and therefore

not significant. This remark is relevant for most of
the cases studied in the microscopic approaches of [20,
21], where the smoothing expression M Q of the mass
parameters is used. In few cases, corresponding to
longer collective times, however, such a structure in
the mass parameter may be of importance.
Nevertheless, it is clear that the present work needs
to be pursued into fully selfconsistent ATDHFB
calculations, i.e., including Thouless ¯ Valatin
corrective terms, and it must be considered in this
perspective as providing good starting grounds for a
more comprehensive account of the low-energy
collective dynamics. While doing so, some
approximations would still remain. One of the most
stringent could be the limited number of chosen
collective variables. In this respect, the existence of
peaks in the mass parameters might give a hint of
the usefulness of introducing other paths in the
collective motion. Consequently, even though our work
is limited to a one-dimensional collective dynamics,
the fact that we demonstrate the existence of such
unexpected structures is of relevance for a possible
extension to a larger number of coupled collective
modes.

It is a pleasure to thank J.F. Berger, J.P. Delaroche
for stimulating discussions. For the final part of this
work, one of us (E.Y.) has been supported by a grant
of the French Minister of Foreign Affairs. This work
has been also supported through an ongoing agreement
between the French CNRS and the Academy of
Sciences of Uzbekistan. All these supports are
gratefully acknowledged.

1. Bohr A., Mottelson B. Nuclear Structure. Benjamin, New York,
1974. ¯ Vol.1.

2. Bohr A.//Mat. Fys. Medd. Ban. Vid. Selsk., 26(14), 1952.
3. Kumar K., Baranger M.//Nucl. Phys. A92 , 608, 1967.
4. Baranger M., Veneroni M. //Ann. phys. 114 , 123, 1978.
5. Giraud B., Grammaticos B.//Nucl. Phys. A233 , 373, 1974.
6. Reinhard P.G.//Ibid. A252 , 133, 1975.
7. Girod M., Grammaticos B.//Ibid. A330 , 40, 1979.
8. Berger J.F.Doctorat es Sciences thesis. Universite de Paris-Sud,

Centre d’Orsay, 1985.
9. Giannoni M.J., Quentin P.//Phys. Rev. C21 , 2060, 1980.

10. Inglis D.R.//Ibid. 103 , 1786, 1956.
11. Belyaev S.T.//Nucl. Phys. 24 , 322, 1961.
12. Thouless D.J., Valatin J.G.//Ibid, 31 , 211, 1962.
13. Baranger M.//Phys. Rev. 130 , 1244, 1963.
14. Valatin J.G.//Ibid, 122 , 1012, 1961.
15. Bogoliubov N.N.//Sov. Phys. Usp. 2, 236, 1959.
16. Krieger S.J., Goeke K.//Nucl. Phys. A234 , 269, 1974.
17. Giannoni M.J., Quentin P.//Phys. Rev. C2, L2076, 1980.
18. Dobaczewski J., Skalski J.//Nucl. Phys. A369 , 123, 1981.
19. Yuldashbaeva E. Dostorat thesis. Univ. Bordeaux I, 1997.
20. Egido J.L., Robledo L.M.//Nucl. Phys. A494 , 85, 1989.
21. Girod M., Delaroche J.P., Libert J., Deloncle I.//Phys. Rev. C45 ,

R1420, 1992.
22. Decharge J., Gogny D.//Ibid. C21 , 568, 1980.
23. Vautherin D.//Phys. Lett. B69 , 393, 1977.
24. Goeke K., Lane A.M., Martorell J.//Nucl. Phys. A296 , 109, 1978.
25. Berger J.F., Girod M., Gogny D.//Comp. Phys. Communs. 63 , 365,

1991.
26. Flibotte S. et al.//Phys. Rev. Lett. 71 , 4299, 1993.

Fig.5. Contribution of the 〈dh0 〉 (resp., 〈d∆0 〉) type to the quadrupole

vibrational mass parameter M P(q) as a function of the quadrupole
moment q in units u =  1.5104 fm2  are displayed around the top of the
first fission barrier of 2 3 8U in dashed line (resp., solid line) and
corresponding to the left-hand scale (resp., right-hand scale)

E. Kh. YULDASHBAEVA,  J. LIBERT,  P. QUENTIN  et  al.

26 ISSN 0503-1265. Ukr. J. Phys. 2001. V. 46, N 1



27. Haslip D.S. et al.//Ibid. 78 , 3447, 1997.
28. Mikhailov I.N., Quentin P.//Ibid. 74 , 3336, 1995; Mikhailov I.N.,

Quentin P., Samsoen D.//Nucl. Phys. A627 , 259, 1997.
29. Mikhailov I.N., Quentin P.//Europ. J. Phys. A1, 229, 1998.
30. Kriicken R. et al.//Phys. Rev. C54 , R2109, 1996.
31. Semple A.T. et al.//Phys. Rev. Lett. 76 , 3671, 1996.

32. Remain P., Libert J., Girod M. et al.//Third Intern. Conf. 'Modern
Problems of Nuclear Physics“: Abstr., Bukhara August 23 ¯ 27,
1999. ¯ P.43.

33. Chinn C.R., Berger J.F., Gogny D., Weiss M.S.//Phys. Rev. 45 ,
1700, 1992.

Received 05.10.99

STRONG  VARIATIONS

ISSN 0503-1265. Ukr. J. Phys. 2001. V. 46, N 1 27


